
Class Diagram
Class diagrams show the system’s entities and their
relationships. Use it to explain terms and their relations on
high level (glossary, topic map), or to show the structure of
data to be processed.

Relation to other diagram types: Use Component / Block
diagrams to show where data is stored or transferred in the
system.

Use Case Diagrams
Use Case diagrams allow the specification of a system’s
desired functionality on task level. You can show which use
cases exist and who participates in them. Describe all use
cases in an additional detailed text document.

Relation to other diagram types: Use Component / Block
diagrams to show which agents will perform which tasks. Use
Activity, Sequence or State Machine diagrams to display the
behavior described by the tasks.

Design level

Component / Block Diagram
Additional components and connectors are introduced to
describe the static structure of the system on design level.

Sequence Diagram
Describe method calls between objects here.

Activity Diagram
Provide more detailed information on behavior on method
level.

Class Diagram
Show classes and interfaces with their methods and attributes
and their relations, including inheritance.

Package Diagram
Describe dependencies between packages that include
classes and interfaces.
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What is TAM?
TAM™ stands for Technical Architecture Modeling. TAM
defines a common language and a graphical notation for
communication on model level at SAP. The main target is to
introduce a UML standard-based set of diagram types.

 TAM can be used on conceptual and on design level
TAM defines a set of seven UML diagram types
TAM defines the features to be used for each diagram type
TAM extends the UML 2.0 metamodel to incorporate FMC
(www.fmc-modeling.org) block diagrams

Why TAM?
By unifying technical architecture modeling methods, you
benefit in many ways:

 TAM improves the quality of architecture models by
eliminating the ambiguity introduced by freestyle modeling.

 TAM facilitates knowledge exchange across teams around
the world through unified architecture models.

 TAM minimizes the learning effort by reducing the number of
diagram types (UML offers 13) and the variety of elements.

Conceptual Level

Component / Block Diagram
The Component / Block diagram is the most important diagram
type to describe architecture. Use it to show the static structure
of the system, and to provide a big picture view.

Agents perform operations; they read and write data and
communicate with other agents. (Question: Who does
something?)

Storages are passive; they only hold data that is accessed by
agents. The arrows indicate direction of data flow. (Q: Where is
the data?)

Channels are used by agents to communicate with each other.
Arrows indicate the direction of data flow, the “R” indicates who
initiates the request and then waits for the response. (Q: Which
agents communicate? What data and which requests do they
exchange?)

Component / Block diagrams show a snapshot view of a
system on instance level; to indicate multiple agents or
storages, use three dots or stack the nodes.

Relation to other diagrams types: Use Class diagrams to
show how data relates that is located in storages or exchanged
via channels. Use Activity or Sequence or State diagrams to
express the behavior of agents and how they interact.

The Component / Block diagram is UML 2.0 compliant by an
extension of the metamodel.

Sequence Diagram
Sequence diagrams show how agents interact and
communicate. They should be used on instance level, that is
they should show one typical sequence.

Relation to other diagram types: The connection of the
agents via channels is shown in Component / Block diagrams.
To show more details of processing, use Activity diagrams.

Activity Diagram
Activity diagrams show the behavior of one or more agents in
greater detail. In contrast to the Sequence diagram, you can
show loops or concurrency in a more intuitive way. Using
swimlanes, you can assign actions to specific agents.
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Relation to other diagram types: Use Component / Block
diagrams to show the connections among the agents via
channels, and  their access to storages.

State Machine Diagram
State Machine diagrams provide an alternative way to
describe behavior. Use them where you obviously need the
description of states and their transitions.

A state transition is performed when the event occurs (given
the guard condition is met). The transition may include an
action that has to be executed as well.

Relation to other diagram types: The connection of the
agents via channels is shown in Component / Block diagrams.
To show more details of processing, use Activity diagrams.

http://www.fmc-modeling.org

