

HASSO - PLATTNER - INSTITUT
für Sof twaresystemtechnik an der Universi tä t Potsdam

Conceptual Architecture Patterns
Technische Berichte

des Hasso-Plattner-Instituts

für Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik

an der Universität Potsdam

2

Bernhard Gröne and Frank Keller
(eds.)

April 2004

Conceptual Architecture Patterns:
FMC-based Representations

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an
der Universität Potsdam erscheint aperiodisch.

Herausgeber:

Redaktion
EMail

Vertrieb:

Druck

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Bernhard Gröne und Frank Keller
{bernhard.groene, frank.keller}@hpi.uni-potsdam.de

Universitätsverlag Potsdam
Postfach 60 15 53
14415 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@rz.uni-potsdam.de
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2004

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft 2 (2004)
ISBN 3-935024-98-3
ISSN 1613-5652

Conceptual Architecture Patterns: FMC–based Representations

Bernhard Gröne and Frank Keller (editors)

Research assistants of the chair “Modeling of Software–intensive Systems”
Hasso–Plattner–Institute for Software Systems Engineering

P.O. Box 900460, 14440 Potsdam, Germany
E-mail: {bernhard.groene, frank.keller}@hpi.uni-potsdam.de

Abstract

This document presents the results of the seminar “Conceptual Architecture Patterns” of the winter term 2002 in the
Hasso–Plattner–Institute. It is a compilation of the student’s elaborations dealing with some conceptual architecture patterns
which can be found in literature. One important focus laid on the runtime structures and the presentation of the patterns.

Contents

1. Introduction 1
1.1. The Seminar . 1
1.2. Literature . 2

2 Pipes and Filters (André Langhorst and Martin Steinle) 3

3 Broker (Konrad Hübner and Einar Lück) 12

4 Microkernel (Eiko Büttner and Stefan Richter) 18

5 Component Configurator (Stefan Röck and Alexander Gierak) 28

6 Interceptor (Marc Förster and Peter Aschenbrenner) 35

7 Reactor (Nikolai Cieslak and Dennis Eder) 44

8 Half–Sync/Half–Async (Robert Mitschke and Harald Schubert) 51

9 Leader/Followers (Dennis Klemann and Steffen Schmidt) 59

1. Introduction

1.1. The Seminar

In the winter term of 2002, we offered a seminar “Conceptual Architecture Patterns” for students in the 5th
semester of Software Systems Engineering. They should learn what literature says about architecture of software–
intensive systems and combine the conceptual architecture view with architecture patterns. The seminar was
divided into two parts: In the first part, the students had to read and present the different architecture views
of [HNS00] and learn about patterns presented in [GHJV94]. In the second part, they used this knowledge to
read the POSA books [BMR+96, SSRB00] and present the architectural patterns of the books with the conceptual
architecture view in mind.

1

Another important topic was to find an adequate notation for the pattern and to discuss the alternatives, like
the Fundamental Modeling Concepts (FMC) [KTG+02][KW03]. As the students had examined the Apache HTTP
server very closely [GKK03], it was obvious to look for applications of the patterns in Apache or similar systems.

1.2. Literature

The patterns in this compilation have been taken from the books “Pattern–Oriented Software Architecture”
Volumes 1 and 2 [BMR+96, SSRB00]. The conceptual architecture is one of four views introduced by Kruchten
[Kru95] and refined by Hofmeister, Nord and Soni in their book “Applied Software Architecture” [HNS00]. To
introduce the students to patterns, they had to present some design patterns of the Book “Design Patterns” by
Gamma, Helm, Johnson and Vlissides [GHJV94].

References

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. Pattern-
Oriented Software Architecture — A System of Patterns, volume 1. Wiley, 1996.

[GHJV94] Erich Gamma, Richard Helm, Raph Johnson, and John Vlissides. Design Patterns — Elements of Reusable
Object–Oriented Software. Addison–Wesley, 1994.

[GKK03] Bernhard Gröne, Andreas Knöpfel, and Rudolf Kugel. The apache modelling project. Web site, 2003.
apache.hpi.uni-potsdam.de.

[HNS00] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied Software Architecture. The Addison-Wesley
object technology series. Addison Wesley Longman, 2000.

[Kru95] P. Kruchten. Architectural blueprints – the "4+1" view model of software architecture. IEEE Software,
12(6):42–50, 11 1995.

[KTG+02] Frank Keller, Peter Tabeling, Bernhard Gröne, Andreas Knöpfel, Oliver Schmidt, Rudolf Kugel, and
Rémy Apfelbacher. Improving knowledge transfer at the architectural level: Concepts and notations.
In Hamid R. Arabnia and Youngsong Mun, editors, Proceedings of the SERP’02, the international confer-
ence on software engineering research and practice, las vegas, pages 101–107. CSREA Press, June 2002.

[KW03] Frank Keller and Siegfried Wendt. Fmc: An approach towards architecture-centric system develop-
ment. In Proceedings of 10th IEEE Symposium and Workshops on Engineering of Computer Based Systems,
Huntsville Alabama USA, 2003.

[SSRB00] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-Oriented Software Ar-
chitecture — Patterns for Concurrent and Networked Objects, volume 2. Wiley, 2000.

2

Abstract
Applications that extensively perform processing of
data chunks within various distinguishable processing
steps suffer inflexibility in reuse and recombination of
processing steps, if interweaved into a monolithic
assembly. The Pipes and Filters architectural pattern
we present approaches these problems by exploiting the
benefits of uniform interconnection methods to
construct chains of non-interdependent processing
entities. Further we present a graphically simple
representation to communicate this architectural
pattern effectively.

Keywords: Software architecture, modularization,
pipes and filters, architectural patterns,
modeling, FMC

1. Introduction
Applications benefit from employing the Pipes

and Filters architectural pattern where large
amounts of data are to be processed, such as with
web servers and rendering, imaging or sound
processing as well as applications of message
processing, such as applications of enterprise
application integration (EAI), business process
engines and processing engines for stackable
protocols, for example web services stacks. First
we show problems inherent to a monolithic
design of processing steps. In section 2 we present
the Pipes and Filters patterns as a solution
addressing these problems. A discussion of
advantages and disadvantages of employing the
pattern follows in section 3. Effective
communication is best supported by using
graphical notations, accordingly we discuss
graphical notations for communication means in
section 4, whereas sections 5 and 6 cover
extensions of the basic pattern and a reference
implementation of the pattern respectively.

1.1. Application
As outlined in the section before large amounts of
either chunkable data or single messages are to be
processed. Chunkable means that data chunks
belonging to a larger set of data may be processed
in any order; in effect that is no interdependencies
between data chunks that dictate the order in
which individual chunks are to be processed. If
single data units are not associated with a larger
set of data, as it is the case with messages, the
data implicitly is chunkable. Naturally a
processing order too implicitly is obeyed by the
sequence of processing steps itself.

The Pipes and Filters pattern is applicable, if
repeatedly numerous individual, distinguishable
processing steps, that perform processing and
transformation of data, are involved within a
sequence of processing steps.

1.2. Problems
Let the processing of the examples given before
be assembled – this is in software, hardware or
both – into a monolithic component.

The outcome is an inflexible structure; no easy
reuse, recombination, adding or omitting of
processing steps is possible anymore.

For example, let there be two complementary
processing components I and O that transform a
stream of data in some way, one requirement
initially was that the data is encrypted before it
leaves component O and accordingly is decrypted
on entering component I. Henceforth, if such a
processing component needs to be reused with
changed requirements, either resources may be
wasted or the components may be rendered
worthless.

Given lessened requirements now do not
include encryption and decryption anymore, then
if simply a transportation layer is used between

Pipes and Filters Architectural Pattern

André Langhorst, Martin Steinle
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{andre.langhorst, martin.steinle}@hpi.uni-potsdam.de

3

component I and component O simply resources
– for example, cryptographic hardware devices,
or processing power – are wasted. If encryption is
performed in software for example and CPU
power is a precious resource then this may turn
out to be a problem.

Given that the output of component O needs
to be intercepted before handing it into
component I, encryption may render this
impossible and thus render the components
worthless. The same is true if component I should
accept non-encrypted or differently encrypted
input. Generalized, if steps need to be modified to
large extents or need to be replaced completely
the effort required is huge resulting in an
increased development effort.

This is especially true if for example the
component created consists jointly of hardware
and software and a move to a different platform is
required: Some hardware components may not be
available anymore, not work flawlessly or not
work at all within the changed environment, the
programming language may have changed and so
on.

2. Solution: Pipes and Filters
Processing steps are connected by pipes to create
filter chains. A sequence of generally
independent, but adjacent, processing steps
performed by filters that are connected by
uniform channels, labeled pipes, used to
incrementally process data constitutes a filter
chain.

Filter Filter
Pipe

Filter chain

Pipe Pipe

input output

Figure 2-1 – Basic filter chain with data flow from
left to right

2.1. Filter chains
Input to the filter chain is data from another filter
or a data source. Output leaving the filter chain is
sent to another filter or a data sink. Pipes and
filters, perceived as filter chains, constitute the
building blocks for the Pipes and Filters pattern.

2.2. Pipes
Pipes do not transform data, generally buffer data
and function as the uniform interconnection
mechanism connecting at least two filters. Pipes
are implemented by for example function calls,
OS-pipes, message channels and IPC-channels.

2.3. Filters
Filters do arbitrary processing and
transformation, such as data enrichment or
refinement. Filters consume data from an input
and deliver it to an output.

2.4. Key aspects
The Pipes and Filters pattern uses filter chains to
exploit the following key aspects to a certain
extent (see section 3).
2.4.1. Uniform communication
Pipes provide uniform communication means
between filters.
2.4.2. Incremental processing model
An incremental processing model, utilizing data
chunks as smallest entity of communication,
underlies the Pipes and Filters pattern.
2.4.3. Stateless filters
Filters generally are stateless, both filters and data
chunks are not interdependent.
2.4.4. Endpoints
Support for many different media with respect to
input/output for the whole chain is gained
through exchanging terminating filters which in
turn are connected to data sinks and sources
respectively. Examples for data sources/sinks
include files, sockets, keyboards/terminals and
sensors/actors.

2.5. Classification of filter chains
There are two common classifications that can be
applied to filters and filter chains. The behavioral
classification helps to spot autonomous active
filters and demand-activated passive filters while
the functional classification helps to indicate the
task the filter chain performs and filters within
the filter chain perform. These classifications do
not always exactly fit to a certain filter or filter
chain respectively.

4

2.5.1. By behaviour
Active filters actively pull data from and push
data to pipes down the pipeline where generally
most other filters are passive. Analogous, pulled
data flows towards the filter and data pushed
down the pipeline flows away from the filter.
Active filters may be implemented as a separate
process, a separate thread or program or even be
represented by a separate component or
computer. Pulling means sending a request for
data which may be satisfied or propagated within
a pull filter chain, once the request is satisfied it is
pulled backwards through all filters that
propagated the pull-request. Pushing simply
means supplying data chunks to the next filter
after filter-intrinsic processing has been
performed.

Passive filters are activated by receiving
pushed data, or by receiving a pull request. If the
request for data cannot be satisfied it is
propagated and once the filter, the request was
propagated to, sends data the filter performs
processing and answers the request it received.

Common combinations of active and passive
filters include: active filters with passive filter
chains attached, active filters with two passive
filter chains, one pull and one push pipeline,
serving as input and output to the filter
respectively. Many more combinations of filters,
for example several active filters with several
push and pull chains each, are valid.
2.5.2. By function
Input filters and input filter chains are associated
with receiving information and corresponding
actions. Common tasks of input filters include:
Decryption, deserialization, detaching (of
attached headers or files for example), decoding,
reading values.

Output filters and output filter chains are
associated with sending information and
corresponding actions. Common tasks of output
filters include: Encryption, attaching, encoding,
writing values, transforming data.

A strict classification by function may not be
accurate if a filter performs hybrid tasks.

2.6. Granularity
The pattern can be applied to very low level tasks,
such as stream processing in imaging systems
where data on the level of bits and bytes is
handled incorporated into a single microchip

ranging to very high level tasks, such as
messaging systems for business processes where
very complex data is passed around within inter-
organizational networks.

3. Discussion of advantages and
disadvantages

3.1. Benefits
Applying the Pipes and Filters pattern reasonably
has specific benefits with regard to architectural
attributes of which we list the most important
ones. Most of them are founded in the modular
approach of the pattern.
3.1.1. Ease of recombination and reuse
A standardized interface both of filter and pipe
components allows filter chains to be combined
and recombined very easy. By this, many filter
chains with different behavior can be produced
very fast. For example, UNIX operating systems
provide a uniform pipe mechanism and a lot of
tools such as “cat” and “sort” which can be
combined in any way with a simple shell
command.

Also, Pipes and Filters simplifies reuse. New
filter chains, even with completely different
behavior, can be designed by rearranging filters
of an existing filter chain, or adding some new
filters. In addition, complete filter chains (without
data source and sink) can be used as one filter in a
new chain. The gain experienced through
replaced endpoints for example include
facilitation for supporting multiple file formats,
network protocols, databases.
3.1.2. Efficiency by parallel processing
Through incremental processing of data, active
filters running on a multiprocessor system or in a
network can perform their functions in parallel,
because all filters can already start to work on the
partial results of its predecessors instead of
having to wait for their completion. This can
improve the performance of the system using a
filter chain.
3.1.3. No intermediate files necessary
Computing results using several programs is
possible without pipes, by storing intermediate
results in files. This approach disables parallel
and incremental processing of data and is error-

5

prone if processing stages have to be set up every
time a system is run. Using Pipes and Filters
removes the need for intermediate files and
enables incremental and parallel processing.

For debugging and testing purposes, you may
want to see intermediate results. This can be
achieved easily by inserting a T-junction into the
pipeline. A T-junction is a special filter that does
not modify data, but only writes it to a second
destination, for example a file.

3.2. Disadvantages
There are some cases when applying the Pipes
and Filter pattern introduces several liabilities of
which we again list the most important ones.
3.2.1. Error handling
Error handling is the biggest problem of Pipes
and Filters, because pipeline components have
only one possibility of communication, the data
stream. At least error reporting can be done using
a separate output channel, but in most cases the
only possibility is to restart the pipeline if an error
occurred and to hope that it will complete
without failure. If error handling is important,
different architectures such as Layers should be
considered.

3.3. Sharing state information
If different processing stages must share a large
amount of global data, the Pipes and Filters
pattern can be inappropriate, because it
introduces dependencies between the filters,
reducing the possibility to recombine filter chains
and to process data in parallel.
3.3.1. Expensive pipe mechanism
If pipes and filters have different data formats, the
overhead of converting data can prune the
benefits of Pipes and Filters, especially the
performance improvements.

The features offered by pipes, such as
buffering, queuing and transferring data, allocate
resources that limit the number of pipes.
3.3.2. Limited scalability
Due to the linear architecture of Pipes and Filters,
the throughput of a filter chain is limited by the
throughput of its slowest component and it is not
possible to deploy a second instance of this
component. So scalability of a filter chain is

limited to the scalability of its components.
3.3.3. Small amount of data or low

complexity of processing steps
The cost for transferring data between filters can
be relatively high compared to the cost of the
computation a single filter performs, so the
system will chiefly be occupied with data transfer
instead of computations. Besides, if the amount of
data to process is very small, the cost of building a
filter chain can be too high.

4. Notational representation
Graphical representations are well suited for
improving knowledge transfer on the
architectural level. We present a proposal for
modelling Pipes and Filters using FMC. We
present detailed models for the most important
cases to improve comprehension regarding the
Pipes and Filters pattern as well as simplified
models to be used as a means of communication.

4.1. Detailed representation
For all examples the actors A and B represent
individual filters which are connected through
varying mechanisms, the pipe.
4.1.1. Push
What happens when an actor A initiates a push to
B through a pipe is depicted in Figure 4-1. The
actor sends the data through the data channel to
the pipe that buffers all data. Either an overflow is
indicated and A is stopped by the pipe or A
continues to send and implicitly or explicitly
receives ACKs from the pipe. While receiving
data the pipe sends data to B and itself can be
stopped by receiving a notification of buffer
overflow from B. The exact implementation of the
pipe for the most part does not matter at an
architectural level. Even if we use procedure calls
we assume the model depicted in Figure 4-1
holds.

A
executes push Pipe

buffer

Bdata data

Ack/OverflowAck/Overflow

Figure 4-1 Push method in detail

6

4.1.2. Pull
The pull example depicted in Figure 4-2 is similar
to the push example except that requests for data
are issued to the pipe which satisfies them from
its buffer and sends it similarly, with ACK and
overflow, as explained for Figure 4-1. If the
request cannot be satisfied it is propagated to
filter B, which eventually satisfies the request. For
simplicity we ignore the case where the pipe
buffer is full with requests and assume that it
simply accepts no more requests if the request
buffer is full and the requesting party has to
resend its request.

A Pipe

req
buffer

B
executes pull

req

data data

Ack/Overflow Ack/Overflow

Figure 4-2 Pull method in detail

4.1.3. Two active filters
Two active filters where one filter pushes to and
one filter pulls from the pipe is merely a
combination of the two cases above.

A (active)
executes push Pipe B (active)

executes pull
req

data

ack/overflow

data

buffer

ack/overflow

Push interface Pull interface

Figure 4-3 Active push filter, connected with
active pull filter

4.2. Simplified representation
We reduce unnecessary complexity by abstracting
from all error-handling and flow-control and even
the pipe as an active element itself. Graphically,
we use quasi-textual descriptions to underline
data flow, which is crucial to understand how
data is passed around in complex compositions.
An arrow is drawn within the channel, whose
direction matches the direction of data flow.
Furthermore we stretch the channels to create a
resemblance to pipes and queues graphically.
Finally we place “Pipe” within the channel, using
“P” as a shorthand for “P” in complex diagrams
thereafter. It should be obvious then that the
textual description “Pipe” not only names the
channel to express its purpose, it states that all

behaviour already shown in the previous sections
are intrinsic to this specialized channel.

We introduce no new entities and do not
change the semantics of elements while keeping it
as simple as possible. We recommend to adopt
similar schemes for modelling queues and related
structures as specializations of channels.
4.2.1. Push
As described before the arrow helps indicating
the data flow. By comparing with the detailed
version we notice that the direction of the data
channels correspond to the direction of the arrow
here.

Sender
executes push Pipe ReceiverSender
executes push Pipe Receiver

Figure 4-4 Push method, modeled simple

4.2.2. Pull
Similar to the notation for the push method we
use the arrow to indicate data flow, while
introducing a directed channel that is used to
transmit pull requests.

Sender Requestor
executes pullP

req

Figure 4-5 Pull method, modeled simple, “P”-
shorthand-variant

4.2.3. Two active filters
The case with two active filters differs slightly.
We decided not to use a similar specialized
channel here or other structures as all other
approaches would either be too abstract (an
undirected channel) or yield contradicting
semantics. Also there are good reasons to
explicitly model the pipe as an actor. Its buffering
and coordination capabilities are more important
at these interconnections points, which often are
connection points between whole filter chains,
and the pipe could exhibit some special behaviour
what too would justify explicit modelling. Several
aspects, such as flow control or buffering, should
only be modelled if necessary on an architectural
level.

7

Sender
executes push Pipe Requestor

executes pull

req

data data
Figure 4-6 - Two active filters and a pipe

4.3. Alternative notations in FMC
We have evaluated many alternatives and
dismissed them for various reasons.
4.3.1. D-sign, F-sign…
A minor modification, the change of the “P”-sign
to “D” that maybe stands for “data”.

We want to point out the existence of the pipe
actor that is included in our detailed model. “P”
should exactly express that this channel is
shorthand for the detail model we presented.

Therefore no other denomination (flow,
data…) was chosen.
4.3.2. Selective access
A storage between two actors being written to by
using an edge labelled “add” and being read by
an edge labelled “fetch” or “remove” changes the
semantics of the read and write access,
furthermore it is not intuitive. In addition it
prohibits flow control without introducing more
changed semantics or overcomplicating the
model.
4.3.3. Further alternatives

We do not describe further alternatives we

found because they either lacked to indicate the
data flow or introduced unintuitive or overly
complex models.

4.4. Existing alternative notations
We did not encounter any existing alternative
approach to model the pipes and filters pattern in
a reasonable way.

4.5. A complex example
Figure 4-7 depicts a more complex example of a
camera with some exemplary components. The
video camera chip is an active component which
continuously captures data from a real world
object and pushes it into the pipe next to it. The
pipe buffers this image data. For simplicity the
chip cannot be turned off. The command
execution is another active filter similar to a
processor, but unless invoked from the user who
interacts with it through the user interface it has a
passive role.

Once activated it becomes an active filter and
pulls data through the (upper) pull pipeline. The
pull pipeline consists of a configurable DSP and a
zoom chip, which in turn consists of a zoom filter
and a soften filter. Here you can see, that a filter
can consist of several lower level filters. The filters
in the pull pipeline perform their tasks depending
on the request and the data pulled out of the pipe
by modifying the (for example) 16kB chunks
pulled from the pipe. Once a whole image
(depends on selected options, for example
4096kB) has arrived at the command execution

video camera
chip

P
i
p
e selected

options

user interface

R

exposure
correction

command
execution

soften filterzoom filter

RAM

incremental
writer

Portable
storage

chip

Zoom chip Configurable DSP

wavelet
dissection

compression
algorithm

JPEG2000 compression chip

file headers

Object

R

Memory stick writer

Kodak camera chip
(continuously capturing)

R
Camera control

req

data data

buffer

P P P

PPP

Figure 4-7 Complex Example (active components are bold-typed)

8

and the user issues to save it to the portable
storage chip, the execution pushes the data
(stored in RAM) down the push (lower) pipeline
consisting of a compression chip and a smart
media writer. Each filter propagates the (16kB)
chunk it has been pushed to after applying some
processing to it. Finally the chunks arrive at the
incremental writer, which asks the compression
chip what headers to write and then stores all
chunks it receives on the portable storage chip
(Note: If the pipe mechanism is the same between
the compression chip and the writer, the chip will
wait until it can fill the chunk (16kB) or all input
data has been received).

This example is a modified version of the
common scenario having an active component
with a passive pull and a passive push chain.

Naturally extensions come into mind, for
example introducing an advanced pipe (here a
message router) between DSP and zoom chip to
route requests to a test stub for automatic tests
from which test data can be pulled. Broadcast
channels or t-junctions could be used to write
complete images on request to different media at
once or to write logs.

As one can clearly see it is easy to determine
which components have to be exchanged in order
to change processing, which components can be
reused in which ways, how test stubs can easily
be added, how and where features (additional
DSPs) can naturally be added and so on.

5. Variants and Extensions
The following variants extend Pipes and Filters by
softening its principles. They allow to use Pipes
and Filters in much more cases, but also they are
more complicated as “standard” Pipes and Filters.

5.1. Variants
Sometimes one of the following variants can be
useful.
5.1.1. Filters with more than one

input/output
The linear Pipes and Filters architecture can be
varied allowing filters with more than one input
and/or output. Processing can then be seen as a
directed graph, that can even contain feedback
loops. Such systems are very flexible, but they can
grow fast very complex and become hard to

control. One should restrict to simple acyclic
graphs, which makes complexity controllable but
can be nevertheless a useful extension to filters
with only one input and output.
5.1.2. Additional shared memory
Introducing additional memory, shared by all
filters, is another extension. This memory can be
used in three ways: as read-only source for
information needed by all filters, as a global state
or to improve performance.

If several or all filters need some information
additional to the data they process it is suitable to
use a region of shared memory. Normally, it
would be more complex to pass this information
along with the processing data.

A global state (see Figure 5-1) can be
sometimes useful, but often, the dependencies
between filters it introduces reduce the possibility
to recombine filter chains. Nevertheless, in some
cases it is easier to have a global state then to pass
global information along with processing data,
involving more complex data structures and an
increase in data volume to be handled by pipes.

If filters run on one machine, shared memory
can be used for a significant improvement of
performance. The idea is to keep all processing
data in shared memory and pass only pointers
between the filters. Thus, no data must be copied,
but nevertheless, it can be ensured that only one
filter at a time accesses a chunk of data.

......

Figure 5-1 Several Filters sharing a global state

5.1.3. Advanced Pipes
A Pipe normally is a relatively simple component,
consisting mainly of a buffer and methods to put
data into it and to remove data from it. A
standard example are UNIX pipes. The most
simple implementation of a pipe, when
connecting an active with a passive filter or two
passive filters, can be a simple procedure call. But
also very sophisticated pipes can be imagined. In
fact, every mechanism that can be used to
transport data from one system component to
another can be used as a pipe. For example, we
can think of broadcasting pipes or routing pipes,
that do not only buffer and transmit data, but

9

decide based on environment data or the
processing data itself where to send it. Another
possibility could be a pipe with a
publisher/subscriber mechanism, sending
different data depending on its type to all
components subscribed for this type. Such
complex pipes allow a huge variety of
applications, but we loose the benefits a uniform
pipe interface introduced, for example easy
recombination.

5.2. Dynamic filter chains
Filter chains can either be static structures,
depending only on their source code, or they can
be created dynamically (see Figure 5-2). Using the
configurator pattern can be appropriate here. The
structure of a filter chain can depend on some
configuration data (e.g. a config file) or on the
data processed (see section 6 for an example).

configurator

... ...

Figure 5-2 A dynamic filter chain

6. Exemplary implementation:
Apache 2 Web Server

Apache 2 intensively uses filters to process
requests. For each request, a pulling pipeline
(called input filter chain) and a pushing pipeline
(called output filter chain) is created. Both filter
chains consist only of passive filters. Once these
filter chains are created, the request processing
component pulls request data from the input filter
chain and pushes response data to the output
filter chain. Each filter and the request processing
component can modify the data.

Apache divides each request or response into
small chunks, called “buckets”, and some buckets
are held together in one brigade (see Figure 6-2).
The filters work on a brigade at a time, pass it to
the next filter and then work on the next brigade
(if available)

Bucket Bucket Bucket Bucket
Brigade

Bucket

Figure 6-2 A Brigade containing several buckets
The brigades lie in a shared memory, so filters

do not pass brigades, but actually pointers to
brigades to improve performance (see Figure 6-3).

Filter A Filter B

Brigade Brigade ...

Filter X...

Brigade

Figure 6-3 Filters access brigades lying in a
shared memory area

7. Appendix – Distinction from
other architecture patterns

Pipes and Filters can be separated relatively clear
from the following patterns, because it is the only
pattern that addresses processing of large
amounts of data and focuses ease of
recombination and reuse of processing steps.
• Broker

The Broker pattern is a way of decoupling
point to point communication.

• Leader/Follower, Half-Sync/Half-Async,
Reactor
These patterns deal with the problem of
handling concurrent events

• Interceptor

CORE_IN SSL HTTP_INSocket InputFilter

Client

CORE HTTP
HEADER PHP DEFLATE

Output Filters

Input Filters

Server

Request
processing

req req req req

P P P

PP PP

PSocket

Figure 6-1 Apache Web Server Request Processing

10

Interceptor introduces a possibility to delegate
processing of unprocessable events to
“plugins” dynamically

• Microkernel
Microkernel describes a specific structure of
systems.

References
[AMP] The Apache Modeling Project,

http://apache.hpi.uni-potsdam.de
[POSA2000] D. Schmidt, M. Stal, H. Rohnert and F.

Buschmann, Pattern-Oriented Software
Architecture. Wiley, 2000

[EIP] Enterprise Integration Patterns,
http://www.enterpriseintegrationpatterns.com

[AP2SRC] Apache 2 Web Server Source Code,
http://httpd.apache.org

[AP2DOC] Apache 2 Documentation,
http://httpd.apache.org/docs-2.0

[AP2M2002] A. Langhorst, M. Steinle, Apache 2
Modules, Lecture in Seminar Systemmodellierung,
2002

11

Modeling of the Broker Architectural Framework

Konrad Ḧubner, Einar L̈uck
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60
14440 Potsdam, Germany

{Konrad.Huebner,Einar.Lueck}@student.hpi.uni-potsdam.de

Abstract

The Broker Architectural Framework describes how dis-
tributed systems can be structured in order to achieve loca-
tion, platform and language transparency. The use of this
pattern allows architects to structure their applications in
a way that makes it much easier to reuse existing solutions
and organize system architectures in a way that increases
the overall maintainability.

This paper presents an approach towards modeling this
pattern that goes beyond the original description in [1]
aiming at an improved knowledge transfer at the architec-
tural level. Instead of Class-Responsibility-Collaborators-
Modeling and class diagrams, Fundamental Modeling Con-
cepts (FMC) are used in order to describe the structure and
the key benefits of this pattern.

1. Introduction

In nearly every engineering discipline the reuse of exist-
ing solutions for difficult problems that have proved their
value is essential to speed up product development cycles.

Software engineers have to cope with the problem that
arises from the fact that solutions for different products are
developed with different programming languages and due to
the lack of interoperability cannot be reused easily. Lack of
interoperability is also a major concern if different operating
systems or platforms are utilized or different protocols serve
as basis for communication in distributed systems. We con-
clude that in order to circumvent these problems it is nec-
essary to achieve language and platform transparency from
the user’s point of view.

An engineer does not only have the task to construct so-
lutions in a way they can be reused easily, he is also re-
sponsible for designing systems as maintainable as possible
in order to avoid high maintainance costs. In distributed
systems the overhead of code changes necessary in case of

changes in the service locations decreases the maintainabil-
ity of systems. Obviously, a lack of location transparency
is the reason for this problem. A related major concern im-
plied by maintainbility is that existing systems should be
reconfigurable at runtime. Therefore the systems have to
be partitioned in parts that can easily be replaced. Many
systems lack a standardized infrastructure that allows the
solution of the stated problem.

The Broker Pattern [1] addresses the mentioned reusabil-
ity and maintainability requirements by proposing an archi-
tectural pattern in which these concerns are encapsulated in
a way that full language, platform and location transparency
is achieved. In addition to that the decomposition of func-
tionality in reusable, exchangeable and reconfigurable enti-
ties is enforced.

The following section describes the solution structure of
the pattern using the Fundamental Modeling Concepts [2]
and goes beyond the original description in [1]. The chosen
notation aims at communicating the idea and the concepts
of the pattern as efficiently and comprehensible as possible.

The discussion section is dedicated to review our de-
scription approach and compares it with the original de-
scription in [1].

2 The Broker Pattern

2.1 Proposed Description

To fulfill the requirements listed in the previous section,
several components have to be introduced. Put together,
they form the Broker Pattern. The first introduced compo-
nent to be added to the system is the Broker. It realizes
the distribution of requests to the responsible components
and the transfer of results and exceptions and thus supports
the detachment of functional components from the system
to break up complex structures. The Broker is placed be-
tween components and clients as depicted in Figure 1. As
a result, functional behaviour can be added, replaced or re-
moved easily because clients are not affected. By placing

12

the Broker between client and components, location trans-
parency can be implemented.

During the implementation of location transparancy it
comes obvious that it is necessary to associates names with
components. That’s the reason why some kind of naming
service has to be implemented that becomes part of the bro-
ker. It is important to understand that the associated names
contain no information about the location of the component
like IP-Addresses or network names or something like that.

Ideally, all communication traffic has to pass the Broker
as shown in figure 1. This might result in a bottleneck at
the Broker. To circumvent this problem it is reasonable to
soften the concept of completely encapsulated communica-
tion to some extent depending on the context.

Figure 1. Broker component

The idea is that we have one Broker connecting all com-
ponents and clients. It is obvious, that each client or compo-
nent needs a local communication gateway, so the abstract
Broker is separated into local Broker for each connected
system.

The next requirement, encapsulation of Broker ac-
cess, is implemented through proxies. As a result, the
client does not need to know anything about inter-broker-
communication and Broker implementation details. Same
issues apply for server components which access the Bro-
ker through a proxy as well (Figure 2).

The use of proxies supports language transparency. For
example, proxies can be generated automatically from
language-independent interface descriptions (IDL). Each
supported language has to provide a compiler for IDL doc-
uments in order to generate proxies and stubs. The require-
ment for this strategy is that a mapping between the imple-
mentation language of the Broker and the target language
exists.

Figure 2. Broker with proxies

Another way is to define a binary layout of method ta-
bles. The binary method table standard has to be supported
by the target programming language.

The aspect of inter-broker-communication needs to be
addressed at this point. With a homogenious Broker net-
work, we should not need to worry about inter-broker-
communication, because the implementation will cover this
point. The Broker Pattern also conciders heterogenious sys-
tems due to network- or broker-specific incompatibilities.
The solution to circumvent this problem is the introduction
of a bridge component, encapsulating system specific net-
work details and resolving Broker incompatibility by mes-
sage conversion. The bridge component is necessary for
complete platform transparency.

With these components - Broker, Proxy and Bridge -
all needed parts to realize a Broker Pattern for platform-
, language- and location-transparent communication exist.
Figure 3 shows a compositional structure diagram combin-
ing all introduced parts.

The goal of better maintainability of a distributed system
is reached by the encapsulation through the Broker. Compo-
nents can be registered and deregistered at the Broker (add
and remove). The replacement of components is not speci-
fied by the pattern. Special concerns are necessary because
requests during the exchange phase have to be delayed until
the new component is available. Moreover, the current state
of a component might be important and therefore has to be
saved before the component is replaced to keep the system

13

Figure 3. Broker with proxies and bridges

consistent.

As mentioned above, the pattern can be softened con-
cerning the communication ways. There are two different
variants of the pattern: The indirect and the direct commu-
nication approach.

The indirect communication approach requires all re-
quests to pass the Broker, so that a complete encapsulation
of the entire communication process is reached. None of
the components and clients has to know where and on what
system the other ones reside.

To increase system performance the Broker component
can be disburdoned by establishing a direct connection be-
tween two components or a client and a component, after
the Broker has found the component responsible for the cur-
rent request. A resulting requirement is that the client and
the component which serves the request use the same proto-
col, otherwise they could not communicate with each other.

The dynamics of a typical request from the client via the
Broker to the component and back in a homogenious Broker
environment (no bridges needed) are shown in figure 4.

2.2 Applications of the Broker Pattern

The typical application field for the Broker Pattern is a
middleware environment. The purpose of middleware sys-
tems is to hide aspects of distribution from the appication.
The CORBA implementation is closest to the Broker Pat-
tern of all middleware platforms. This is no surprise as
the pattern was described after CORBA was implemented.
Other middleware platforms contain elements of the Broker
Pattern and a mapping to the main components - Broker,
Local Broker and Proxies - can be made. We also inspected
language transparency and communication means.

Figure 4. Broker dynamics

2.2.1 CORBA

The best-fitting example for an application of the Broker
Pattern is CORBA [4]. In CORBA, a so called Object-
Request-Broker (ORB) is running on each connected sys-
tem. The ORB ist responsible for the discovery of com-
ponents and distribution of requests. In this it implements
the Local Broker on each system. According to our pattern
description the sum of all ORB is the conceptual Broker.

CORBA programmer’s have to describe the interfaces
of their components in the Interface Definition Language
(IDL) that is independent from implementation languages
like Java, C++ and C. Client and server proxies are gener-
ated by the correpsonding IDL compiler and are called IDL
stubs and skeletons in terms of CORBA. Obviously IDL
is an important tool to achieve the stated language trans-
parency. All we need in order to interact with a certain ser-
vice is the a mapping from the interface description in IDL
to the programming language with which we describe our
client.

As we pointed out in the pattern description it is nec-
essary to map names to components. For each component
registered with an ORB a so called Interoperable-Object-

14

Referenece (IOR) is created in which the address of the hos
of the component, a unique number and further information
that is necessary to discover the component is encoded. This
IOR is sufficient for discovering an object. But IORs are not
human readable, encode information about the location of
the component and in this do not fulfill our requirements on
naming. The CORBA Naming Service is a component that
has to be located on one host in the network. During startup
of the Local ORB a reference to the CORBA Naming Ser-
vice is passed to it. The Naming Service is responsible for
mapping human readable names to IORs and provides an
appropriate CORBA interface.

Platform transparency is also addressed seriously by
CORBA. For the communication between ORBs, IIOP and
GIOP (Internet / General InterOrb Protocol) are specified
precisely.

In figure 5 you can see the structure of an example
CORBA system. The naming service aspects are left out
in order to ease the mapping to our pattern description.

Figure 5. CORBA system structure

2.2.2 DCOM

The DCOM environment [5] from Microsoft consists of
much more components building the middleware infrastruc-
ture than CORBA. That’s the reason why the mapping to the
Broker Pattern is far more complex.

DCOM specifies that clients primarily interact with the
so calle COM Service Library in order to connect to a cer-
tain component. The latter communicates with the Ser-
vice Control Manager (SCM) in order to locate the com-
ponent the client wants to interact with. The SCM checks
wether the component is a locally available. This is imple-
mented by contacting the OXID-Resolver which contacts
the OXID-Resolvers located on other hosts in order to dis-
cover the desired component if necessary. After this the

COM Service Library has the function to instantiate a Proxy
either a one for local Inter-Process-Communication or for
communication via network. In both cases the Proxy in-
teracts via the Prox Manager with the component. In case
of distributed components the corresponding channel is cre-
ates by the OXID-Resolver. Aware of our stated pattern de-
scription we can now conclude that these 4 agents form the
Local Broker.

For each type of component a so called Class-Identifier
(CLSID) and a Class Factory are associated. The Class Fac-
tory is responsible for creating an instance of the compo-
nent. Thus the issue of naming is addressed by the formerly
stated Service Control Manager (SCM) who maps CLSIDs
to Class Factories.

In order to achieve language transparency Microsoft has
specified binary method table standard. As stated in the pat-
tern description this approach requires all programming lan-
guages to support it. This is for example the case for C++,
C and Visual Basic.

For interoperability between different host types the
specification of communication protocols is based on an ex-
tended version of the Distributed Computing Environment’s
(DCE) Remote Procedure Call (RPC). Thereby platform
transparency is implemented.

A simplified compositional structure of the DCOM envi-
ronment is depicted in Figure 6.

Figure 6. DCOM system structure

2.2.3 Enterprise Java Beans

The third inspected middleware platform, Enterprise Java
Beans (EJB) [6], is very complex and the connection to the
Broker Pattern is by far not as obvious as in the case of
CORBA. Nevertheless, it is possible to identify participat-
ing components and map them to the Broker Pattern. Nam-
ing services are provided by the JNDI service. It enables an
application to look up services supplied by an EJB Server

15

and connect to them. The EJB server can be considered as
the Broker. Proxies that implement home and remote inter-
faces reside within the server. On the client side the corre-
sponding element is the stub. EJB is bound to Java, so there
is no native language transparency. This aim is reached by
CORBA support. As a result all CORBA services can be
integrated into an EJB environment. JavaRMI is used as the
communication protocol between client and server. Figure
7 shows a very abstract view of the EJB architecture. EJB
is far more complex and an in depth description of it goes
far beyond the scope of this paper.

Figure 7. EJB system structure

2.3 Relation to other patterns

In this section we describe in which way the pattern is
related to other patterns from [1] and [3].

2.3.1 MicroKernel

The MicroKernel Pattern [1] aims at organizing the archi-
tecture of a system in a way that just the minimal core func-
tionality of the system under construction is put into an ar-
chitectural entity and all other architectural entities use this
core in order to fulfill extended services. The relation to the
Broker Pattern consists of the idea of the modularisation and
exchangability of components but the MicroKernel Pattern
does not take into account the aspects of transparency and
configurability like the Broker Pattern does.

2.3.2 Component Configurator

This pattern, taken from [3], is in one aspect related to the
Broker Pattern. It describes mechanisms that allow the con-
figuration, addition, replacement and removals of compo-
nents at runtime. The former subsections state in which way
the Broker Pattern addresses this issue. Location, platform
and language transparency issues are not addressed explic-
itly.

2.3.3 Interceptor

The Interceptor Pattern [1] addresses the issue of transpar-
ent enhacement of existing systems with additional func-
tionality. It thus takes into account the issues of extendabil-
ity and transparency. The Interceptor Pattern focuses on an
event-driven approach towards the activation of services. In
contrast to this, the Broker Pattern focuses more on location,
platform and language transparency, aspects not covered by
the Interceptor Pattern.

2.3.4 Forwarder-Receiver

The Forwarder-Receiver Pattern is strongly related to the
Broker Pattern. It addresses the issue of Peer-To-Peer com-
munication. The focus is set to the abstraction from the
inter-process communication protocol. It lacks solutions for
the platform, language and location transparency problem.
Proxies that hide the distribution aspect are for example not
part of the pattern description.

3. Discussion of the description

The original description in [1] divides the solution struc-
ture of the pattern into classes. For each class responsibil-
ities are collected and stated precisely. In addition to that
other classes a certain class has to corporate with in order
to fulfill its service are identified. These aspects are writ-
ten down on so called Class-Responsibility-Collaborators-
Cards (CRC-Cards) - Figure 8. We consider this to be very
useful in order to understand the pattern in detail. Rela-
tionships and the operations of each of the classes are ex-
pressed by an Object-Modeling-Technique-diagram (OMT-
diagram) - Figure 9. Together with the detailed verbal de-
scription one can grasp the nature of the pattern and is en-
abled to apply it.

Figure 8. CRC-Card for the Broker class taken
from the orginal Broker Pattern description

16

Figure 9. OMT-diagram taken from the original
Broker Pattern description

We think our approach complements the original de-
scription. The application of the pattern has strong impli-
cations on the compositional structure of a system. This as-
pect is not addressed in the original description. Our inten-
tion is to focus the description on this issue and thereby im-
prove the overall comprehensibility of the pattern descrip-
tion. We consider this to be useful because we think espe-
cially in order to understand the issues of distribution, com-
munication and (location, platform and language) trans-
parency it is appropriate to consider this dimension. The
block diagram notation introduced in [Keller et al.] allows
the visualization of communication relationships between
agents in the compositional structure of a system in a cer-
tain point of time and enables us to depict these aspects in
Figure 2.

Interpreting Figure 2 we think it is easy to grasp that
each Client uses proxies to interact with services located on
other machines written in different languages transparently.
Aware of the overall context of the pattern the responsibil-
ities of the Broker and the function and the responsibilites
of its refinement into Local Brokers can be concluded, too.
We do not want to pledge for a reduction of the textual de-
scription of patterns. Instead we aim at an improved com-
prehensibility by introducing additional pictures.

Considering Figure 5, Figure 6 and Figure 7 we conclude
that a concrete application of the pattern and its composi-
tional structure can be depicted in an easy to comprehend
way. In addition to that it is also possible to recognize
the pattern application in concrete systems in case compo-
sitional structures are visualized through the use of block
diagrams.

We consider it to be problematic to structure the pattern
in terms of classes. Classes are normally associated with the
Object-Oriented development paradigm. As we know from
[CORBA] it is also possible to apply this pattern in case of
procedural languages like C. Aware of this fact we consider
an illustration in terms of agents with certain responsibili-

ties to be more appropriate.

4. Conclusion

The Broker Architectural Framework has strong impli-
cations on the compositional structure of systems that are
not addressed in the description of the pattern in [1]. That’s
the reason why we have proposed an enhanced description
based on Fundamental Modeling Concepts [2] that empha-
sizes this dimension of the pattern.

Furthermore this modeling approach can be utilized to
visualize applications of patterns as we have shown for EJB,
DCOM and CORBA. We pointed out that in order to under-
stand the certain aspects of the pattern like location, plat-
form and language transparency we consider it to be essen-
tial to focus on the compositional structure of systems.

Our description approach is a step towards more com-
prehensible pattern descriptions and complements existing
pattern descriptions.

References

[1] F. Buschman, R. Meunier, H. Rohnert,A System
of Patterns. Pattern-Oriented Software Architecture,
John Wiley & Sons, 1996

[2] F. Keller, P. Tabeling, R. Apfelbacher, B. Gröne, A.
Knöpfel, R. Kugel, O. Schmidt,Improving Knowledge
Transfer at the Architectural Level: Concepts and No-
tations, Proceedings of The 2002 International Con-
ference on Software Engineering Research and Prac-
tice, Las Vegas, 2002

[3] E. Gamma, R. Helm, R. JohnsonDesign Patterns. Ele-
ments of Reusable Object-Oriented Software, Addison
Wesley Longman, 1997

[4] http://www.corba.org/

[5] http://www.microsoft.com/com/tech/dcom.asp

[6] http://java.sun.com/j2ee/

17

Abstract

The microkernel architecture pattern can be applied to
software systems that must be able to cope with
changing requirements. This pattern promotes an
architecture, where a minimal functional core serves as
an abstraction layer for underlying hard- or software
and as a socket for plugging in components that offer
extended or customer-specific functionality. Thus, this
pattern fosters easy portability as well as changeability
and extensibility at the cost of a high degree of
engineering complexity.

This article describes the microkernel architecture
pattern based on [POSA1996]. It shows how this
pattern can be used for developing software systems
that need to run on multiple hard- or software
platforms and that can be extended in an easy manner.

1. Introduction

Originally, the concept of kernels was developed
in connection with the modularization of
operating systems. The term kernel refers to the
relatively small but extensible core functionality
that all well-structured operating systems provide
in contrast to monolithic ones. An operating
system is said to have a microkernel if its
architecture follows “an approach to operating
system design emphasizing small modules that
implement the basic features of the system kernel
and can be flexibly configured” [FOLDOC].

However, this definition reveals an important
problem1 when it is used for classifying systems:
how small are these modules exactly and how are
basic features separated from all other features
that have to be implemented as well? Hence, for a
clear classification it is very important from what
point of view a system is analyzed.

Furthermore, this definition focuses on
operating systems only, although the microkernel

1 Many other definitions have the same or similar problems.

architecture pattern can be applied to other
software systems as well. This follows the
common software development paradigm of
designing small code units implementing a clear-
cut functionality. For example, a microkernel
middleware platform (OSA+2) has been
developed at the University of Karlsruhe, and
Pervasive Software is selling a database
management system based on a microkernel
architecture – the MicroKernel Database Engine
(MKDE).

The following aspects have to be taken into
account for a characterization of microkernel
systems:

• Memory footprint: An easy definition, that
focuses on this rather trivial aspect could be as
follows: “A kernel is a microkernel if its
memory footprint is smaller than x KB.” This
aspect – however simple it may be – is
considered surprisingly often. Especially when
it comes to embedded systems, the size of a
microkernel is of utmost importance, given the
limited resources these systems generally
provide.
Obviously, this definition has to be changed
depending on a system’s functionality and field
of application. For instance, the memory
footprint of the monolithic operating system
MSDOS 1.0 is certainly smaller than the one of
the real-time microkernel operating system
QNX 6.0.

• Reliability and security: This aspect is based on
the observation that a system is more reliable
(i.e. more tolerant towards programs or
modules containing errors and more resistant
to system attacks) if its (micro)kernel contains
only basic functionality that is used by all other
system components as well as functionality

2 OSA+: Open System Architecture - Platform for Universal
Services

Microkernel – An Architecture Pattern

Eiko Büttner, Stefan Richter

Hasso-Plattner-Institute for Software Systems Engineering
P.O. Box 90 04 60, 14440 Potsdam, Germany

{eiko.buettner, stefan.richter}@student.hpi.uni-potsdam.de

18

that needs special access rights and thus cannot
reasonably be implemented elsewhere.
Considering that functionality with special
access rights generally poses a threat to system
stability (since it could potentially damage any
system component), it is an especially good
idea to implement it in the microkernel as this
system component is usually the one the most
extensively tested. Furthermore, faulty system
components with limited access rights are less
likely to crash the whole system.

• Portability and decoupling of system
components: Within the scope of reusing
source code or even compiled binaries this
aspect is becoming more and more important.
It aims at making system components as
independent as possible from underlying hard-
or software and from each other.
In microkernel systems, many components are
typically implemented as separate processes
that build on the basic functionality offered by
the microkernel. The microkernel on the other
hand exports abstract and generic interfaces to
most parts of the underlying hard- or software
platform, thus serving as an abstraction layer.
Ideally, only a system’s microkernel has to be
adapted when it is ported to a new platform.

• Scalability and configurability: In many
microkernel systems the microkernel serves as
a socket for plugging in components offering
extended functionality such as device drivers
or support for network communication
protocols. The microkernel system can be
flexibly configured by adding only required
components and removing all others.

With all these different aspects in mind, it should
be a rather difficult task to find one concise
definition describing all possible types of
microkernel systems. Most system architectures
will concentrate only on one or a combination of
some of the aforementioned aspects, paying less
attention to others.

A better understanding of the microkernel
concept may be achieved by putting all aspects
into a pattern – the microkernel architecture
pattern. The pattern described in this article helps
developing new software systems based on a
microkernel architecture as well as understanding
already existing ones.

2. The Microkernel Architecture

Pattern

2.1. Participating components

According to [POSA1996], the microkernel
architecture pattern defines five kinds of
participating components: the microkernel,
system services, system views, adapters and
clients. Note that in certain microkernel systems
some of these components (mainly adapters and
system views) might be absent.

Figure 1 Structure of a microkernel system.

2.1.1. The Microkernel

The microkernel is – as expected – the central part
of a microkernel system. As pointed out before, it
encapsulates basic functionality needed by all
system components as well as such functionality
that absolutely needs the special access rights that
a (micro)kernel typically has and that would
affect system stability, security or other important
aspects. It offers abstract interfaces to the
underlying hard- or software platform, providing
atomic services that can be used by other system
components to implement more complex services.

When designing a microkernel, special care
should be taken that the amount of functions
implemented in it remains as small as possible.
Mainly, because otherwise benefits such as easy
portability, maintainability and changeability will
be lost, and in fact a microkernel with an
overwhelming amount of functionality does not

19

deserve its name anymore.
A typical microkernel is responsible for

managing resources and enabling other system
components to communicate with each other. In
[TanVsTor1992] Tanenbaum points out, that an
operating system microkernel should handle
inter-process communication (IPC), interrupt
requests (IRQ), low-level process management
and possibly IO1. Operating system microkernels
normally use the IPC services they provide for
exporting their programming interfaces.

2.1.2. System Services

System services2 extend the microkernel’s
functionality. The microkernel serves as a socket
for plugging in such system services either
statically at compile-time or dynamically during
startup or even at run-time. This helps keeping
the memory footprint of a microkernel system as
small as possible and making it scalable and
configurable.

As shown in figure 1, system services are
accessible through the microkernel only. When
the microkernel receives a request from another
system component, it decides whether it can
handle this request directly or whether it needs a
system service for this purpose. In the latter case,
the request is transparently forwarded to an
appropriate system service. Thus, other system
components are generally unaware of where and
how certain functionality is implemented.

As a system service provides extended
functionality that is not directly offered by the
microkernel it might also be dependent on the
underlying hard- or software platform. In
operating systems, system services are commonly
used for implementing device drivers and page
fault handlers. OSA+ uses system services to offer
additional functionality such as event logging and
security services and to provide interfaces to an
underlying operating system [OSA+2000] (see
also figure 6).

2.1.3. System Views

System views3 implement different views of the
system and introduce a further abstraction layer
into the system architecture by using the
microkernel’s atomic services to form more

1 In other articles Tanenbaum mentions basic memory

management as well.
2 In [POSA1996] these are called “internal servers”.
3 In [POSA1996} these are called “external servers”.

complex services. Each system view is normally
implemented as a separate (user-mode) process.

Especially in operating systems, system views
export their interfaces in the same way the
microkernel does (e.g. by using IPC). In other
systems, system views might either rely on the
microkernel or on functionality provided by an
underlying operating system (e.g. network
communication or IPC).

Figure 2 Structure of Hydra – a conceptual
microkernel OS: Note that in [POSA1996] it is
pointed out that Hydra’s adapters need to access the
microkernel in order to establish IPC connections to
their associated system views. This is not shown in
this diagram as the primary purpose of adapters is to
provide a communication channel between
applications and system views.

Operating systems typically use system views
to emulate various full-fledged operating systems
built on top of the microkernel. In [POSA1996] a
conceptual operating system called Hydra is
taken as an example of how to implement a
microkernel architecture system. Hydra uses
system views to provide the programming
interfaces and functionality of a set of already
existing operating systems such as UNIX System
V, OS/2, MS Windows and NeXTSETP. Each of
these system views runs in a separate process,
exposing its API by means of IPC facilities
provided by the microkernel. The Pervasive
MKDE uses system views to provide different
data models of its physical data. Currently, it
features transactional (Btrieve) and relational
(Pervasice.SQL) models [PERVPROD] (see also

20

figure 7).

2.1.4. Clients

Clients are applications (or application-like
modules) that employ the functionality one or
more system views expose through their
interfaces. In case of operating systems, a client is
usually associated with exactly one system view.
E.g. in Hydra, MS Windows clients would be
restricted to using the MS Windows system view
while an OS/2 client would use the OS/2 system
view. Hydra does not allow one client to be
associated with more than one system view.
Other microkernel systems however might allow
clients to access multiple system views at the
same time if necessary.

2.1.5. Adapters

In some cases, an undesirably strong coupling
of components may result from an architecture
where clients access system views directly. For

example, an application that accesses a database
directly would be restricted to some specific
database implementation. Using an ODBC1 driver

1 ODBC: Open Database Connectivity

that offers uniform access to relational databases
would enable the application to cooperate with
any database management system supporting
ODBC (such as the MKDE…). In the context of
the microkernel architecture pattern, such
decoupling components are referred to as
adapters.

In Hydra, adapters make applications
unaware of whether they are really running on
the operating system they were originally
developed for, or whether they are running on
Hydra, using one of the system views. If
applications were to access Hydra’s system views
directly they would have to be modified in order
to employ IPC mechanisms instead of
conventional procedure calls for gaining access to
operating system functions. With adapters,
clients only have to be recompiled. Furthermore,
adapters make it possible that both clients and
system views can be changed independently.

Adapters are normally implemented as
libraries that are linked to clients and thus reside
in their address spaces.

2.2. Cooperation of microkernel
components

The manner in which the various components of a

Figure 3 Handling of client requests.

21

microkernel system communicate exactly
depends on how these components are
implemented and what kind of communication
facilities are available. Figure 3 shows how a
client request might be handled in a pure
microkernel system. While clients, system views,
the microkernel and system services are all
implemented as separate processes, adapters are
linked to clients. Thus, clients access adapters via
conventional procedure calls.

When a client requests a service of the
underlying microkernel system, it invokes an
appropriate routine of its adapter. The adapter
then creates and sends a service request message
to a system view.

That system view might either be able to
handle the request directly or it might need
functionality provided by the microkernel for this
purpose. In the latter case the request is
forwarded to the microkernel. (The system view
might also send several requests to the
microkernel to service the client request.)

Subsequently, the microkernel has to decide
whether it is able to handle the request or
whether it must invoke a system service.

As shown in figure 3, a microkernel system
typically makes heavy use of inter-process
communication. Especially in an operating
system, where it would be the microkernel’s task
to handle inter-process communication, the
microkernel would be activated each time an IPC
message is sent from one process to another one.

2.3. Implementation

Generally, designing and implementing a
microkernel system is a very complex process.
Often, many different solutions may exist for a
given task. Common problems are:

• It has to be decided whether all components
must really be implemented as separate
processes or whether some of them can be
combined with other components, e.g. in order
to improve overall performance. For instance,
certain system services might be linked to the
microkernel, or system views could be linked
to clients. In small systems, even the
microkernel could be directly linked to clients
(The VRTX real-time operating system is an
example of a microkernel that is directly
linked to clients (i.e. applications) [VRTX]).
Using processes normally results in more
overhead because IPC mechanisms have to be

employed instead of conventional procedure
calls. On the other hand, combining
components may decrease system stability as a
faulty component can potentially damage
many others, causing the whole system to
crash.

• Efficient request handling strategies have to be
found for those components implemented as
separate processes. In particular, the most
frequently used components could improve
their performance by using multiple threads
for servicing client requests.

• It has to be determined how much and which
functionality needs to go into the microkernel,
and what can be implemented elsewhere. A
small microkernel might not offer enough
functionality for some purposes, thus
complicating the development of clients.
Implementing more functionality in the
microkernel may decrease portability and
maintainability on the other hand.

For analyzing and designing a microkernel
system, [POSA1996] proposes a top-down
approach.

In a first step, a requirements analysis is
performed by examining the application domain
(i.e. potential clients and system views). This
helps to find out what kind of functionality the
microkernel system will have to offer. The results
of this analysis are then grouped into
semantically independent categories. In a next
step, it is decided which of these functionality
categories are implemented in the microkernel
and what is put into system services. This
decision depends on the application domain, of
course.

Once it has been determined what kind of
functionality the microkernel system is going to
provide, and once this functionality has been
distributed among the microkernel and its system
services in a consistent way, the microkernel and
the system services themselves have to be
designed. E.g. the layers pattern can be applied for
designing all system components serving as an
abstraction layer for underlying hard- or
software.

The implementation is done using a bottom-up
approach. First, the microkernel and the system
services are implemented. This should normally
be done in parallel, as some parts of the
microkernel might rely on system services, and
most system services will certainly need the

22

microkernel to work. Afterwards, everything else
is implemented in the following order: system
views, adapters, clients.

3. Known Uses

Microkernels have been successfully used for
implementing a broad range of operating
systems. Examples are Mach, QNX, Amoeba,
LynxOS, VRTX, Chorus and many others.
Moreover, the middleware platform OSA+ is
based on a microkernel as well as the MicroKernel
Database Engine.

3.1. The QNX Real-Time Operating
System

The real-time operating system QNX is a good
example of a strict microkernel architecture,
satisfying all aspects mentioned at the beginning
of this article: its memory footprint is very small,
it is very reliable and secure, it is easily portable
to different hardware platforms, and it can be
scaled down to run on hardware with limited
resources such as microcontrollers.

Figure 4 Structure of QNX.

This is achieved by consequently minimizing
the functionality implemented in the kernel. The
kernel only comprises such functions as
scheduling, inter-process communication and IRQ
transmission, all of which normally need kernel-
mode access rights. Moreover, the QNX kernel
has a network communication interface to
provide support for clustering (i.e. connecting
multiple computers over a network and using
them as if they were one giant computer1.)

The process manager is the only process that

1 In [POSA1996] this is called distributed microkernel.

also has certain special access rights. All other
processes – device drivers, services and
applications – run in user-mode. This is an
important aspect as technically there is no
difference between system services (device
drivers…) and applications. They just fulfill
different functions.

QNX (this abbreviation stands for Quick
UNIX) has only one system view – a UNIX-like
API. This system view is linked to clients at
compile time like an adapter.

Figure 5 Structure of QNX mapped on pattern

The main inter-process communication
mechanism in QNX is the so called message
passing. If one process wants to send a message to
another process the kernel is invoked in order to
copy that message from the address space of the
sender into the address space of the receiver.

Figure 6 shows how synchronous inter-process
communication is implemented in QNX. After
having invoked the Send() routine the sending
process remains in blocked states (SEND and
REPLY) until it receives a response.

The receiving process on the other hand
invokes the Receive() routine in order to signal
that it is prepared for receiving messages. It
remains blocked (RECEIVE) until a message
arrives. As soon as it receives a message it may
work on so as to handle the request.

For sending its response, the receiving process
invokes the Reply() routine. At this point, there is

23

no need to put this process into a blocked state
since kernel activity automatically blocks all
processes and since the sending process is already
blocked (REPLY).

Figure 6 Message passing in QNX.

Obviously, this indirect communication results in
a lot of overhead. For a single service request, two
messages have to be copied from one address
spaces into another one and multiple context

switches occur. On the other hand, the complete
protection of address spaces ensures that no
process can read or write data belonging to
another process. This certainly helps developing
reliable and secure systems.

3.2. The OSA+ middleware platform

OSA+ is a middleware platform that can be scaled

to run on hardware ranging from DSPs1 and
microcontrollers to PCs and workstations. The
OSA+ platform enables services running on the
same or different computers to interact in a
transparent way by using so-called jobs for
communicating with each other.

The OSA+ core contains only basic
functionality for service and job management. In
its minimal configuration the OSA+ core offers
only local jobs and services (i.e. no network
communication), a limited number and size of
jobs and services, strictly sequential job
management (i.e. no multitasking), and no real-
time monitoring.

If further functionality is required, and if the
target platform has enough resources, basic and
extension services can be used to scale the OSA+
core to the specific needs of a system. These
services are plugged into the core in the same way
as user services are.

Basic services remove the above-mentioned
restrictions from the system. A memory service
gives access to memory management, allowing

more and larger jobs and services, a process
service allows multitasking, a communication
service provides access to remote services, and an
event service permits the monitoring of real-time
constraints by managing timer and other
hardware events.

The purpose of extension services is to add
further functionality to the OSA+ core such as
event logging and security services.

1 DSP: Digital Signal Processor

Figure 7 Structure of OSA+.

24

3.3. The MicroKernel Database Engine

The MicroKernel Database Engine is the core of
Pervasive.SQL V8. While the MKDE implements
the internal layer of a database management
system, plug-in modules implement the
conceptual layer, providing for example
transactional or relational data access modes.

Figure 8 Structure of the MKDE and
Pervasive.SQL V8

The MKDE provides low-level data management
services such as physical data access, transaction
processing, durability, data and referential
integrity enforcement, data caching and event
logging.

The plug-in modules may provide further
functionality in order to implement their
respective data access modes. For example, the
relational access module provides atomic
statements, bidirectional cursors, outer joins,
updateable views, ODBC data types, triggers,
stored procedures and security.

In the context of the microkernel architecture
pattern the plug-in modules are system views
offering different abstractions of the physical data
managed by the MKDE. Applications can access
these modules by using appropriate
drivers/adapters (e.g. an ODBC driver).
[PERVPROD]

4. Related Patterns

As pointed out in [POSA1996], the microkernel
architecture pattern could be considered as a

special case of the layers pattern. The microkernel
and the system services would constitute the
lowest layers, offering a basic abstraction of the
underlying hard- or software platform. System
views and adapters would be further layers.
Moreover, the layers pattern could proof to be
useful for implementing many of the components
involved in a microkernel system.

The reflection pattern could be used to enable a
microkernel system to be configured and changed
at run-time. In such a system, components could
be dynamically loaded and unloaded, enabling
the system to respond to a changing environment
without restart.

The broker pattern can be used to develop
distributed microkernel systems. In such a system
the microkernel contains a network
communication interface, enabling system
components that run on different machines to
interact in a transparent manner as if they were
running on the same machine. QNX and Amoeba
[DistSys91] are examples of distributed
microkernel operating systems. OSA+ on the
other hand could be regarded as a broker system

based on a microkernel architecture.
For implementing those components running

as separate processes, multithreading patterns
such as leader-followers could be used for
achieving an efficient handling of synchronous
and asynchronous requests. Furthermore, the
proxy pattern could be used in adapters in order to
optimize component interaction by caching
responses to certain requests.

5. Concluding Remarks

As the examples have shown, the microkernel
architecture pattern can be applied to many
different application domains – not only to
operating systems. Usually, these systems are
application platforms for third-party applications
or modules. Thus, it is important that they
provide a reliable environment, protecting the
whole system against possibly malicious or faulty
applications or modules. Other examples of
application domains than those already
mentioned could be: web servers, applications
offering plug-in or scripting support (such as web
browsers and editors), or software systems that
need a distribution, communication, or resource
management mechanism in need of more rights
than most other parts of the system.

Depending on the application domain and on

25

the constraints and requirements guiding the
system architecture, this pattern can be realized in
various ways. However, some characteristics are
common to all microkernel systems:

• The microkernel comprises only a minimal
function set. This makes the microkernel as
small as possible, fostering maintainability and
changeability.

• A microkernel system can be easily scaled and
adapted by adding or removing system
services as needed.

• All other system components depend on the
microkernel – directly or indirectly.

• The microkernel, serving as an abstraction
layer, makes porting of applications easy. In
general, only the underlying microkernel
system has to be adapted.

5.1. Benefits

The microkernel architecture pattern is very
useful for developing software systems that have
the above-mentioned qualities (ending in –ility):
portability, maintainability, changeability,
configurability, extensibility, reliability, scalability
… Further benefits are:

• Clearly structured system design: This pattern
promotes the use of many independent system
components which have well-defined tasks.
Such systems are generally easier to
understand, to maintain and to adapt to
changing requirements.

• The distributed microkernel variant may yield
further advantages such as fault tolerance,
increased availability and transparency (i.e.
inter-process communication over a network is
transparent to processes).

5.2. Disadvantages

Despite all these benefits, using the microkernel
architecture pattern may also have some
disadvantages:

• The process of designing a microkernel system
is a very complex task. It requires profound
knowledge of the application domain.
Especially for small projects, using this pattern
may result in a too large design overhead.

• As has been pointed out several times, using
many separate processes generally leads to an
increased overhead which may in turn
decrease overall performance.

• In some cases, this pattern may complicate the
implementation of certain functionality. Where
otherwise a simple procedure call might
suffice, complex inter-process communication
may be needed in a microkernel system.

5.3. Limitations

Of course, the microkernel architecture pattern is
no magic bullet. It does not guarantee portability
and changeability (and all other -ilities) in every
case.

• Sometimes, the microkernel may need to be
changed when additional system services are
added. Especially, if these services implement
completely new functionality the API of the
microkernel may have to be adapted in order to
accommodate new system calls.

• In [WIN2000] it is pointed out that a crash of an
important system service may lead to a crash of
the whole microkernel (operating) system.

When considering the microkernel pattern, the
main difficulty the system architect has to pay
attention to is the rather complex task of
designing a proper microkernel system which can
in turn lead to an easy-to-understand system.
Using the microkernel pattern does not
automatically guarantee the above mentioned
benefits.

Simple applications that are not intended to be
portable to all kinds of platforms or that do not
have to be extensible should avoid the design
overhead. These systems are typically built for a
limited field of application or a small group of
customers (in contrast to standard software). If
time to market is more crucial than for example
maintainability or if performance is of utmost
importance (particularly where processing
resources are short), applying the microkernel
pattern might be a bad choice.

5.4. Modeling

The microkernel pattern is a great example of
how using FMC increases overall system
understanding. Firstly, FMC focuses on system
structure and behavior rather than on illustrating
the exact representation of processes, classes,
devices etc. This allows recognizing patterns more
easily, as pointed out by figures 2, 5, 7 and 8,
which can be mapped on figure 1 without great
efforts. Additionally, FMC makes it possible to
show the different aspects of a system design. In

26

contrast to figure 5 which reveals the microkernel
pattern, figure 4 concentrates on the abstraction
layer “processes” and thus demonstrates the
commonness of all processes in respect to the
microkernel. It is important to emphasize FMC’s
semiformal, nearly informal approach that
improves inter-human communication about
systems. This approach cannot (and even does not
want to) replace traditional, code oriented
modeling techniques but it is extremely useful for
supplementing them.

References

[DistSys91] Fred Douglis, John K. Ousterhout, M. Frans
Kaashoek, Andrew S. Tanenbaum, A Comparison
of Two Distributed Systems: Amoeba and Sprite,
1991

[FOLDOC] Free On-Line Dictionary of Computing,
http://www.foldoc.org

[OSA+2000] U. Brinkschulte, C. Krakowski, J.
Riemschneider, J. Kreuzinger, M. Pfeffer, T.

Ungerer, A Microkernel Architecture for a Highly
Scalable Real-Time Middleware, 2000

[PERVPROD] Pervasive.SQL V8, Pervasive Products
and Services, Pervasive Software Inc., 2003 (?),
http://www.pervasive.com/support/technical/ps
qlv8/prodserv.pdf

[POSA1996] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, Michael Stahl, Pattern-
Oriented Software Architecture – A System of
Patterns, Wiley 1996

[QNX] QNX Neutrino RTOS, http://www.qnx.com

[TanVsTor1992] Open Sources: Voices from the Open
Source Revolution, Appendix A – The Tanenbaum-
Torvalds Debate, Andrew S. Tanenbaum, Linus
Benedict Torvalds et al.,
http://www.oreilly.com/catalog/opensources/bo
ok/appa.html

 [VRTX] VRTX Real-Time Operating System,
http://www.mentor.com/vrtxos/

[WIN2000] David A. Solomon, Mark Russinovich,
Inside Microsoft Windows 2000, 3. (German)
edition, Microsoft Press 2001

27

Evaluating and Extending the
Component Configurator Pattern

Stefan Röck, Alexander Gierak
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{stefan.roeck, alexander.gierak}@hpi.uni-potsdam.de

Abstract
The Component Configurator Pattern is used when an
application needs to dynamically link and unlink its
components at run-time without being recompiled or
statically relinked.

We will provide an overview and present important
aspects of the pattern. Then we use the Fundamental
Modeling Concepts (FMC) to show an alternative
possibility of the modeling and propose extensions, for
example with the Observer pattern, to increase
functionality and applicability. Furthermore examples
are given succeeded by an evaluation.

Keywords: Component Configurator, Patterns,
Architecture, Configuration

1. Introduction
Design patterns are well known in the software
developing community and used for many years
in building software systems [Gamma1994]. As
participants of the “Conceptual Architecture
Patterns” Seminar at the Hasso-Plattner-Institute
in 2003 we studied different common design and
architectural patterns.

In this paper we will focus on the Component
Configurator pattern. We will start with
descriptions of the pattern and which possibilities
are there today to model it. Then we will present
our own modeling results with the Fundamental
Modeling Concepts [FMC]. We also propose some
suitable extensions in order to enhance
functionality and applicability. Afterwards we
will discuss the relation to other patterns,
evaluate the usability of the pattern and elicit
some uncertainties. Finally we will discuss the
questions whether the pattern could be an
architectural pattern with our proposed
extensions.

2. Pattern description in POSA

2.1. Configuration
In an encyclopedia configuration is described as
“Something (as a figure, contour, pattern, or
apparatus) that results from a particular
arrangement of parts or components. “ [Merriam-
Webster]

Related to Software it is very important to
ask when configuration takes place and how it is
implemented. The basic difference is whether the
application is running or not during
configuration. Changing the configuration at run-
time is in most cases more complicated. For this
pattern changing the configuration is
accomplished in two ways. First by changing the
implementation of a component and second by
reinitializing a component with new parameters.
Both aspects are addressed by this pattern.

2.2. Definition
For our research we focused on the book “Pattern-
Oriented Software Architecture” by D. Schmidt,
M. Stal, H. Rohnert and F. Buschmann
[POSA2000].

In this book the Component Configurator
pattern is defined as followed: “The Component
Configurator design pattern allows an application
to link and unlink its component implementations
at run-time without having to modify, recompile,
or statically relink the application. Component
Configurator further supports the reconfiguration
of components into different application
processes without having to shut down a re-start
running processes.”

28

Figure 1 Class Diagram [POSA2000]

Figure 2 Sequence Diagram [POSA2000]

2.3. Context and Requirements
The Component Configurator pattern is suitable
for applications or systems, in which components
must be initiated, suspended, resumed and
terminated as flexible and transparent as possible.

Hence there is a clear need for a mechanism to
configure the components into an application
which meets the following requirements:

• Ability to modify component implementations
at any point during an application’s
development and deployment lifecycle

• Modifications to one component should have
minimal (ideally none) impact on the
implementations of other components in use

• Ability to initiate, suspend, resume, terminate
or exchange a component dynamically at
runtime

• Administrative tasks should be straightforward
and component-independent

2.4. Participants
There are four participants of the Component
Configurator pattern described in [POSA2000]:

• The Component defines a uniform interface for
configuring and controlling a particular type of
application service.

• The Concrete Component implements this
interface.

• The Component Configurator controls the linking
and unlinking of concrete components into and
out of an application.

• The Component Repository is used by the
Component Configurator to manage all
concrete components configured into the
application.

The relation of the participants is described in
figure 1 as an UML class diagram.

As shown in the class diagram the component
interface has five specific procedures which are
used to uniformly configure the concrete
components. An example control flow is
described in figure 2 (UML sequence diagram). In
this example, two concrete components are
inserted into the component repository and then
removed.

3. System view of the pattern
One problem we faced is that the pattern alone is
not much more than an interface definition with
five procedures, but the basic aspect of this
pattern, the dynamic reconfiguration of a
component, is not completely pointed out. In
order to go beyond it is necessary to embed the
pattern in a surrounding system, to create an
environment in which the Component
Configurator could possibly work. At first we
choose a basic scenario and then develop it to a
higher complexity which goes along with
extensions of the pattern as well.

3.1. First Approach
The modeling of the Component Configurator in
[POSA2000] does not satisfy our needs, thus we
modeled the pattern with the Fundamental
Modeling Concepts (FMC) to get a clear
understanding of the pattern’s main
characteristics. Therefore we need to make several
assumptions of how the pattern’s participants
might integrate within a system.

29

3.1.1. Compositional Structure

Repository Manager

R

insert, remove,
suspend, resume,
find

ServiceComponent R

init, fini Configurator

R suspend, resume

Static Core
Components

R

R

Global
Data

Rfind Rfind

Component's
Data name reference

Admin

Component
Configuration Data

Loadable binary
Components

Figure 3 Structure of the
Component Configurator (block diagram)

A FMC block diagram uses passive and active
components. Active components are called agents
which communicate with each other using
passive components (channels or storages). A
higher level of abstraction allows us to focus on
the relevant participants within the system and
show only their important relations.
Consequently, central agents and their relations
showed in figure 3 need not to be identical to
objects or classes in an implementation of the
pattern.

A central role plays the agent Configurator
which is responsible for loading and configuring
dynamically loadable components, e.g. DLLs, as
well as for their reconfiguration and destruction.
This procedure is triggered by an agent named
Static Core Components which represents all
parts of an environmental static system. The
configuration data are stored in a global storage
which can be modified for instance by an
administrator.

In figure 3, the storage with the dashed line
holding components shows a structure variation
which underlines that creation and destruction of
components may take place at any time. The
Repository Manager encloses all components by
mapping of a component’s name to its actual
reference (which is transient e.g. due to
substitution). The mapping is done by using the
find()-procedure. The Repository Manager has
been introduced to clearly separate the task of
holding references of components.

Again we make some assumptions to retrieve

a clear understanding of suspension and
resumption of components. In [POSA2000] the
responsibility for these issues is not clearly
pointed out. We propose that the Configurator
must not directly suspend and resume
components but uses the Repository Manager to
do so. This implies that he does not need to store
component’s references but can simply pass the
component’s name (received, for instance, from
the Static Core Components) to the Repository
Manager which can perform the mapping and the
operation on the desired component.

Otherwise we would have to hold two tables
with names and references or would have to
implement are shared memory for Configurator
and Repository Manager. Both solutions would
imply an unnecessarily more complex system due
to problems of consistency or separation of
concerns.

3.1.2. Dynamic Structures
An administrator puts binary component and
configuration data into a global storage and forces
the Configurator via a Static Core Component to
process these files. After creation and
initialization an insertion request is passed to the
Repository Manager. This agent makes the
component public to all other participants in the
system by keeping the (unique) name and a
reference (e.g. a pointer or IP-address with port
number) in memory. Only as from now the
component is inserted into the whole system.

At this point the question arises who actually
is responsible for the creation of components. The
answer is that it depends on the level of
abstraction. On a very abstract point of view the
Repository Manager takes this role for reasons
mentioned in the paragraph above. Regarding a
rather technical view the Configurator creates
components although no one except himself can
take advantage of the component’s functionality.

The procedure of reconfiguration looks quite
similar to the insertion except the suspension and
resumption of components. In [POSA2000] these
issues are not described in detail: in fact, it is only
said that it should be possible to suspend and
resume a component but it is not mentioned by
whom and when. A solution might be to suspend
all dependable components during the
reconfiguration process only. A scenario which
manages suspension and resumption indirectly is
described in detail in the following sections.

30

3.2. Extension I – Clarifying semantics
As pointed out in the section above the aspect of
suspending and resuming components is
described only superficially. Therefore we will
now suggest some extensions with the goal to
make the pattern easily and generically
applicable.

An obvious question is which components
should be suspended how long in which scenario.
We propose to extend the Repository Manager’s
functionality in a way that additionally to a
component’s name and reference the information
about connected components is stored. This can
be easily achieved if the requirement is met that
all participants who want to start a
communication with a component call the find()-
procedure. Furthermore a mechanism for
signaling the end of a communication process is
needed. That’s why we introduce another
procedure closeConnection() (see figure 4) which
provides this desired functionality. Both
procedures allow the Repository Manager to keep
track of all connected components for each
dynamically loadable component.

After a reconfiguration request occurred the
Configurator asks the Repository Manager to
remove that component. This is done by waiting
for the end of all open connections and by setting
the allowConnection flag to false which indicates
that no new connections will be allowed. The
Repository Manager can manage this by
returning an error value on new find() requests.
After all connections are closed the remove()
procedure returns and the actual reconfiguration
process can start. Later on the new component is
reinserted into the Repository Manager.

This proposal provides a solution for problems
which might occur if a component in
reconfiguration process receives requests which it
cannot handle at the moment. Additionally a
component can be safely removed without
disrupting existing connections which might
result in unpredictable behavior. Nevertheless the
suspend() and resume() procedures as proposed
in the original pattern description become
obsolete as this functionality can be considered to
be implemented within the Repository Manager
agent. In fact, an exchange of roles takes place
because not the Configurator but the Repository
Manager allows suspension and resumption by

enabling / disabling connections between two
components. Nevertheless the Configurator still
triggers these actions by removing and re-
inserting an existing component.

ServiceComponent

Repository Manager

R

insert, remove,
suspend, resume,
find

R

init, fini Configurator

R suspend, resume

Static Core
Components

R

R

R
R

find,
closeConnection

Component's
Data name reference allow

Connection
connected

Components

Global
Data

Admin

Component
Configuration Data

Loadable binary
Components

Figure 4 Static Structure Extension I

3.3. Extension II – Notifying observers
The suggestion provided in section 3.2 has (at
least) one big disadvantage: no one except the
Configurator knows how long a configuration
process lasts and until when the affected
component is unavailable. This is not only
inefficient but could also lead to strong lack of
performance within the whole system. Imagine an
agent which provides weather information to
clients. During reconfiguration (J. Kachelmann
opened the 65.537th weather station which makes
an adaptation of the database connection
necessary) clients periodically send requests to
the agent and receive “Agent currently not
available” responses. This cause a lot of traffic
and due to lower bandwidth could affect other
applications on the network.

Consequently we suggest to combine the
Observer pattern as described in [Gamma1994]
with our proposal from section 3.2. The
Configurator plays the subject, static and dynamic
components the object role. As shown in static
structure in figure 5 components register for each
component they are going to communicate with
(at a later time). The Configurator keeps a list of
dependables for each component and notifies via
update() all registered participants that a concrete

31

component is currently unavailable. If the
reconfiguration process is finished a new
notification is sent. All components themselves
keep track of all notifications they receive so that
they can determine at any time which
components are “on air” and which are not.

Service
Component
(observer)

Repository Manager

R

insert, remove,
find

Configurator
(subject)

Static Core
Components
(observer)

R

R

update,
register, ...

update, register ,...

Component's
Data name reference

connected
Components

R
find,

closeConnection

Global
Data

Admin

Component
Configuration Data

Loadable binary
Components

Available
components

A
vailable

com
ponents

C
om

ponent’s observers

Figure 5 Static Structure Extension II

A side effect of using this solution is the

absence of the allowConnection-flag in the
Repository Manager’s storage which no longer is
necessary as all components store this kind of
information themselves. Although there is
overhead due to registration and notification
mechanisms fewer messages might be necessary
if clients from the example above are considered
to send only one request for retrieving weather
information because they know which service
component is available at the moment. They also
possibly can send their requests to another
redundant component which provides better
response times.

One might think of further adaptations, e.g. of
a Repository Manager that stores information
about performance issues and automatically
selects and returns a reference to the most suitable
component. However, this is beyond the scope of
this paper.

Of course, this approach is adaptable for
relatively small systems with few components
only. Otherwise the need of much memory and
the amount of control messages become
problematic.

3.4. Memento Pattern
An important issue when substituting
components is the restoration of the old state. If
the requirement exists that a new component
must continue exactly at the point where the old
component stopped the memento pattern as
described in [Gamma1994] is applicable. In the
extensions we proposed the Configurator can take
the responsibility for preserving the state before
calling the fini() procedure. After the init()
procedure is processed the state can be
transferred back.

4. Examples and related patterns

4.1. Java Applets
The principle of Java applets is an example for the
use of this pattern which is often depicted in
literature. The main aspects initialization,
suspension and resumption and the process of
dynamic loading can be found here. The interface
which an applet provides is quite similar to the
description in [POSA2000] with the exception that
no possibility for termination is available. As seen
in figure 6 the role of the Configurator is
distributed among different agents that can be
found in different locations of the system as well.

HTML
Applet

Parameters
Applet
to load

Configurator

ServiceApplet

Browser

Web
Application

User

Admin,
Developer

Java VM
Class Loader

R

Applet
(class files)

Figure 6 Compositional Structure Java Applets

The Java Virtual Machine (VM) together with

the browser is responsible for loading an applet.
The configuration parameters are retrieved from
the web. The corresponding agent decides
whether an applet is part of the system and can

32

substitute applets by giving a different reference
within an HTML-document – in so far he is also
part of the Configurator agent.

In this example we can see that the roles of
configuration (Web application) on the one side
and of management of components (Browser &
Java VM) on the other side are clearly split which
is not the case in the proposals we made above.

4.2. Apache Web Server
The dynamically loadable components within the
Apache Web Server are modules which have
different tasks and which provide a good
possibility for extending the functionality. Apache
modules match in so far with the properties of the
pattern that they can be (re-)configured during
runtime (via graceful restart) and a special agent
is responsible for loading and management issues
(mod_so, which is itself a module) [Apache].

Furthermore, Apache modules meet the
requirement that they have a common interface
(register_hooks procedure). However, they use
the mechanism of hooks (procedures are first
registered at Static Core Components and later on
called by them) which provides a very dynamic
handling. Neither suspension nor resumption of
modules is possible. The Repository Manager is
implemented as a global data structure (pool)
where information about modules, their hooks
and cleanups are stored. Cleanups are necessary
to make sure that the module is unloaded
correctly in the case of a server shutdown. In fact,
these are procedures which are called by Apache
core – that’s why it has modifying access to the
structure variation enclosing the modules in
figure 7.

Service
Apache
modules

pool

Configurator
mod_so

httpd.conf

Apache core

hook registry cleanups

R

<handler>

module registry

admin

Binary Shared
Objects

SIGHUP,
AP_SIG_GRACEFUL

Figure 7 Compositional Structure Apache Modules

4.3. Related Patterns
In most cases design or architectural patterns are
not used isolated but are connected with each
other. The Component Configurator pattern is
typically used by the architectural patterns
described in the next sections.

4.3.1. Pipes and Filters
As the names states this pattern uses filters
connected by pipes to efficiently process data.
Such a sequence of (generally) independent, but
adjacent processing steps is called a filter chain.
When the application needs the ability to
dynamically create filter chains at run-time, for
example if different input sources exist, then the
Component Configurator pattern can be used.

4.3.2. Broker
The broker pattern is a communication pattern
used when components in a distributed
environment should be able to communicate as if
they were in a non-distributed environment. To
accomplish this goal local broker agents and
proxies [Gamma1994] are used. Typically there is
a need to exchange or migrate these components
at run-time. This can be done with the use of the
Component Configurator pattern.

5. Conclusions

5.1. Evaluating the pattern description
In our opinion the description of the Component
Configurator pattern in [POSA2000] is not
sufficient. The structure of the pattern and the
scenarios when applicable are described quite
well. However, for concrete questions like how
the exchange of a component is handled in detail
no answers are provided. Especially control flow
structures are missing and concerning that just an
idea is stated in the book but not a solution.
Furthermore, the pattern is described close to the
implementation point of view while we think a
higher level of abstraction would be more helpful.

The modeling of the pattern is limited to a
class and a sequence diagram (figures 1 and 2)
and therefore not satisfying for a lot of imaginable
scenarios. We present our modeling results with
FMC and propose extensions to the pattern which
allow to understand and, even more important, to
control the configuration process clearer and

33

increase quality of service characteristics like
performance or availability by using the observer
and memento pattern.

Furthermore the question if the Component
Configurator is a design or an architectural
pattern arises. Architectural patterns define
fundamental structural organization schemes for
software systems and provide a set of predefined
subsystems. Design patterns provide a scheme for
refining subsystems or components of
subsystems, or the relationship between them
[POSA2000]. Although we know that no
unambiguous definition and clear dividing line
between those expressions exists we think that the
Component Configurator with our extensions and
modeling is an architectural pattern. It provides a
solution for a concrete problem in a quite abstract
manner and can be adapted to numerous
scenarios as the given examples prove.

5.2. Other aspects and final remarks
A point which has not been considered yet is

the type of operating system in which the pattern
is used. For instance, it makes a large difference
when thinking about suspension and resumption
if all components (static and dynamic) are
running within one thread, if each has one or
more threads or if they even run in different
processes. This example again illustrates the
problems with the original pattern description as
direct communication between classes (i.e.
function calls) does not work between different
processes. Also possibilities of interactions
(shared memory, remote procedure calls, etc.)
between components depend on the concurrency
model.

Another aspect is the distribution of
components which is not excluded in our
modeling, however new aspects as balancing,
fault tolerance and more sophisticated
communication mechanisms, provided for
instance by a middleware platform, play an
important role.

After all a generic evaluation cannot clearly
been drawn. As the pure pattern description
comprises only few facts it can be adapted to
nearly every scenario where configuration plays a
role. However the software architect has to reflect
the current requirements and cannot rely on a
completed solution in that way as with other
patterns. However, we tried to propose some

generic scenarios and showed how this pattern
can be used.

References

[Gamma1994] Gamma, E. et. al. Design Patterns,
Addison Wesley, 1994

[POSA2000] D. Schmidt, M. Stal, H. Rohnert and F.
Buschmann, Pattern-Oriented Software
Architecture. Wiley, 2000

[Merriam-Webster] www.m-w.com/home.htm
[Apache] apache.hpi.uni-potsdam.de
[FMC] www.fmc.hpi.uni-potsdam.de

34

Abstract
The Interceptor architectural software pattern de-
scribed in [POSA00] offers a mechanism to extend
software systems by adding new services, without af-
fecting the existing system’s static or dynamic struc-
tures.

In this paper we present a digest of the pattern in
general, look at the problems it is meant to solve, and
show practical examples of application. Throughout we
will use the system modeling technique FMC for dia-
grams.

Keywords: Software Architecture Pattern, Inter-
ceptor Pattern, Software System Extensibility

1. Introduction
Interceptor is a variant of the Chain of Responsi-
bility behavioural pattern [GOF95], decoupling
communication between the sender of a request
and its receiver. It enhances the flexibility and
extensibility of a software system by letting appli-
cations add to the base system’s functionality and
also dynamically change its subsequent behav-
iour.

In contrast to [POSA00] we use the [FMC] sys-
tem modeling technique to represent the runtime
structures (static as well as dynamic) of the Inter-
ceptor pattern.

2. The Problem
In general, not all of the functionality a system
will have to offer in the future can be anticipated
during development. A web browser, e g, should
be able to display images in formats that will
evolve over time, or that do not even exist today;
a server farm should allow users to add a load
balancing facility of their own choosing to the
system. Putting in too much functionality would
render the system huge and lead to unneccessary

overhead, both in system development and at
runtime.

To seamlessly integrate such applications in a
system they should be able to monitor and ma-
nipulate its behaviour. At the same time this
should not require changes in the design or im-
plementation of the base system.

Furthermore, because stopping and recompil-
ing a system to include new services is not always
possible, it is desirable that additional services
can be included at runtime.

3. The Solution

3.1. Requirements
To solve the problems mentioned it is necessary
to introduce a mechanism for extending a soft-
ware system’s functionality by

• registering new services with the system,
• letting the system trigger these services

automatically when certain events occur, and
(optionally)

• letting the new services access the system’s
internal state and control its behaviour.

By applying the Interceptor pattern all of these
issues can be addressed.

3.2. The Interceptor Pattern

3.2.1. Compositional System Structure
The Interceptor pattern involves two collaborat-
ing main agents: an application and the base sys-
tem it is meant to extend. Communication
between application and base system core is me-
diated by three types of components: dispatchers
and contexts (belonging to the base system), and
interceptors (being part of an application that ex-
tends the base system’s functionality). These
components form a kind of abstraction layer:

The POSA Interceptor Pattern

Marc Förster, Peter Aschenbrenner
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{marc.foerster, peter.aschenbrenner}@student.hpi.uni-potsdam.de

35

dealing with an event is delegated by the dis-
patchers to interceptors, confining adaptation to
different base systems to a small part of the appli-
cation. Figure 1 shows the compositional struc-
ture of the pattern, with the participating agents
and their communication channels (interfaces).

3.2.2. Participating Agents
and their Interfaces

The core system contains all basic system function-
ality that is made extendable by external applica-
tions. Whenever one of a set of predefined events
is triggered (e g, a web server receives an HTTP
request) the core system notifies its dispatchers.
Besides that it creates context agents containing
information read by interceptors and passes a ref-
erence to them to the dispatchers. This can either
be made to happen per event triggered or once for
each interceptor registration.

The dispatchers offer to the application an inter-

face for the registration of its interceptors, i e, ad-
ditional services. Thus, the core system does not
need to know anything about the application or
the services performed by it. When a dispatcher
gets notified on an event it iterates its registered
interceptors, calling the appropriate interceptor
routine, and passes on the context reference given
to it by the core system (in the case of per-
registration strategy the interceptors already
know the corresponding context). Typically there
is one dispatcher for each interceptor.

The contexts contain information on the con-
crete event that has been triggered (in the per-
event creation strategy, see above) or, more gen-
erally, on an event type (in the per-registration
strategy). This information is used by the inter-
ceptors to process the event. In case interceptors
do not need to manipulate the core system, the
context can be just a passive storage location. In
case interceptors are granted modifying access to
system state in order to change subsequent sys-

Interceptor n

Application Core

Core System

Interceptor

register / unregister interceptors

Context
Context

Information

R notify on event

access / modify
system state

Core System State

R

R

R Registered
Interceptors

Base System

Applications

Dispatcher

Figure 1: Basic compositional system structure of the Interceptor pattern

36

tem behaviour, the context will be an active sys-
tem component (depicted in Figure 1) mediating
and thereby limiting such, potentially harmful,
access.

The interceptors pass the service request from
the dispatcher to the application. From the given
context they read the information needed to proc-
ess the event. Optionally, an interceptor can influ-
ence the subsequent behaviour of the core system
(i e, change core system state) through the chan-
nel to its associated context actor, e g, for a load
balancing service that needs to redirect incoming
requests to the least busy server.

3.2.3. Dynamic Structure
After the application has created its interceptors
and registered them with their dispatchers and an
event happens in the core system that is to be
processed externally

1. the system core notifies a dispatcher of the
occurrence of an event. Optionally it passes a
context (reference) along, if the per-event
strategy is set.

2. the dispatcher notifies its registered
interceptors of the event. Optionally it may
block and wait for a reply but that is not
always necessary, e g, for a system monitoring
tool.

3. the interceptors perform their tasks and use the
contexts to obtain information and/or change
the base system’s subsequent actions.

4. the base system continues after the dispatcher
has returned. In case the dispatcher blocks
waiting it will wait, too.

Figure 2 shows the dynamics triggered by an
event, when the per-event strategy for contexts is
chosen, the interceptor call is either blocking or
non-blocking, and the interceptors cannot modify
the core system’s state.

3.3. Design Activities
When applying the interceptor pattern to a con-
crete software design several steps are necessary
in order to define specific details of the pattern
implementation. These steps are called design
activities.

3.3.1. Identify interception points
The first step is to identify the interception points
within the core system. This is to identify the
points of time in the system’s dynamic behavior
in which possible interceptors can be triggered.

A preferred way to do so is to model the dy-
namic behavior of the system. An appropriate
model helps to determine not only which inter-

System Core Dispatcher ContextInterceptor

Create context
and pass it to

appropriate dispatcher

Invoke event-specific
callback method of

interceptor

Pass contextno more
registered

interceptors

else

Access context
information

Return result

Normal operation

Interception
occurred

Do some work

Get info

more to do

else

(only in case of
blocking interceptor call)

Figure 2: Basic dynamic system structure of the Interceptor pattern

37

ception points exist, but also aids in grouping
them. Appropriate models for this task are petri
nets and state machine diagrams.

Interception points can be grouped in two
ways. One is to distinguish between the possible
behaviors of the corresponding interceptors with
the core system. The interceptors can have read-
or write- access to the system and grouping the
interception points in reader- and writer- points
makes it easier in later design activities to specify
the interceptors.

Forming interception groups is the second
way to group interceptors. Semantically similar
interception points are combined into one inter-
ception group. This helps in minimizing the
amount of required dispatchers as only one dis-
patcher per interception group is needed and not
one per every interception point. Semantically
similar can be several things. One possibility is to
group interception points that deal with the same
issue in the system, e.g. all interception points
that deal with the sending of the response in a
web server.

3.3.2. Specify contexts
The next design activity is to specify the contexts
which are used to retrieve information from and
modify the behaviour of the core system.

First of all the grouping of interception points
into reader- and writer- interception points from
the proceeding activity helps to determine how
the context for a specific interceptor has to look
like.

If the interceptor has solely read access to the
system the context doesn’t have to provide an
interface that allows the modification of the
system but it has to provide the information that
the interceptor expects. Interceptors with write
access require both, yet the context defines which
aspects of the system can be modified.

Another decision regarding the interface of
contexts can be made to optimize the number of
needed contexts.

The multiple interfaces strategy means that for
every type of interceptor a different context has to
exist, as a specific interface and therefore context
is specified for each type of interceptor.

In contrary the single interface strategy depicts
the fact that only one interface and therefore only
one context exists for all interceptor types. Due to
their nature a single interface can become very
broad and unhandy while multiple interfaces may
result in too many contexts in use. The actual

strategy used can be a mix of single and multiple
interfaces and the exact amount of contexts and
therefore interfaces has to be balanced out for
every project.

The last thing to specify is the way contexts are
created during the processing of the core system.
Again two different strategies can be applied
here, per-registration and per-event.

In the per-registration strategy the context is
only created once when a dispatcher is registered
while a new context is created for every invoca-
tion of a dispatcher in the per-event strategy. The
information provided by the context in the per-
event strategy can be event specific, one the other
hand the constant creation of contexts can lead to
a big overhead. The per-registration strategy is
the exact opposite. It has no overhead but the in-
formation provided by the context can only be
very general.

3.3.3. Specify interceptors
The main task in the design step of specifying the
interceptors consists in defining the interceptor
interface. It is used by the dispatcher to trigger the
interceptor and to pass the context.

The dispatcher provides a set of callback
methods, which registered interceptors can im-
plement. So the definition of the interface for the
interceptor invocation has to be conform to the
methods defined in the dispatcher.

The passing of the context can be done in two
ways, either by passing the context itself or by
passing a reference to the context.

3.3.4. Specify dispatchers
The last design activity is to specify the dispatch-
ers. This activity includes the definition of two
interfaces, one for interceptor registration and
removal and one for the notification of the dis-
patcher by the core system and the definition of
the interceptor invocation strategy.

The interface for interceptor registration and
removal is used by the application core which
wants it’s interceptors to be registered or re-
moved from the dispatcher. This interface de-
pends on how the dispatcher invokes it’s
registered interceptors. If the dispatcher for ex-
ample uses a priority based invocation strategy,
the priority of the interceptor has to be given to
the dispatcher via the registration interface from
application core.

38

The interface for the notification of the dis-
patcher from the core system is very similar to the
interface for the invocation of interceptors from
the dispatcher. The core system defines callback
methods which are implemented by the dis-
patcher. If the methods defined by the core sys-
tem to trigger the dispatcher and the methods

defined by the dispatcher to trigger the intercep-
tors are identical, the dispatcher doesn’t even
have to implement the methods, as it’s only func-
tion is then to forward the method call to the ap-
propriate dispatcher.

As already mentioned earlier an invocation
strategy for the interceptors has to be defined too.
There are different ways to implement such a
strategy ranging from a first come first serve to a
priority based or a dynamically configurable
strategy.

3.4. Application Examples
The typical range of application for the interface
pattern is software systems that should be highly
extensible. A good example for that are the mid-
dleware systems CORBA and COM as their inten-
tion is to provide a basis for creating software

systems. These software systems are created by
using the middleware systems and extending
their functionality.

Several CORBA implementations, e.g. TAO
and Orbix, use the interceptor pattern to allow a
flexible way of processing requests. Interceptors
can be registered for different interception points,
e g, request before or after marshalling.

Beside this implementation specific use, there
is also a CORBA portable interceptor specifica-
tion, which standardizes the use of interceptors

Flash Plug-In Core

Internet Explorer Core

Adapter to Internet Explorer
(Interceptor)

register / unregister adapter

Received Flash
Media

notify on event
(Flash Media Received)

R

R

R

Dispatcher Registered
Plug-Ins

Internet Explorer

Flash Plug-In

Figure 3: Compositional system structure showing web browser and plug-ins

39

for all implementations. This specification defines
several interception points for whom interceptors
can be registered.

The use of the interceptor pattern in COM is
different from the one in CORBA. Interceptors in
COM are only used to define a custom marshal-
ling functionality for Objects. If an Interceptor is

registered for that task, the custom marshalling is
executed by this interceptor; if not the COM stan-
dard marshalling is applied.

Middleware systems are not the only applica-
tions of the interceptor pattern. Two other exam-
ples are described in more detail.

3.4.1. Web Browser Plug-In
Web Browsers, namely Internet Explorer or
Netscape, implement the interceptor pattern to
allow the integration of Plug-Ins. Plug-Ins are
used to handle media types which the Browser
itself cannot handle.

The following example depicts how Plug-Ins

can register to different Web Browsers and how
they are invoked. It does not go into detail on
how Plug-Ins themselves can modify the state of a
Web Browser.

Figure 3 shows how the browser and the Flash
plug-in are connected. The Flash plug-in consists
of the plug-in core, which essentially contains the
Flash Player, and the browser adapter. This
adapter corresponds to the interceptor of the pat-

Figure 4: Apache Hook Handler registration and activation (taken from [GKKS03])

40

tern. By using adapters, one Flash core can be
connected to different web browsers. It is invoked
by the browser every time Flash media is received
and transmits this media to the plug-in core
which then displays it. Obviously this adapter has
to be registered with the browser before this
mechanism can work.

The browser has a component that is responsi-
ble for registering plug-in adapters. This compo-
nent corresponds to the dispatcher of the
interceptor pattern. This dispatcher also manages
the list of registered plug-ins for different media
types.

Whenever the browser receives media it can-
not handle, an interception point occurs and the
dispatcher is triggered. The received media is
then passed to the dispatcher and from there to
the adapter of the plug-in.

3.4.2. Apache Web Server
The Apache Web Server also implements the in-
terceptor pattern. Apache 2.0 uses this to allow
that modules can register handlers with the
apache core.

Figure 4 depicts how this mechanism works in
general. Any Module can register its handlers for
a predefined hook. A hook is a specified “point of
time” during the processing of the apache core, in
which handlers can be called. These hooks repre-
sent exactly the interception points of the pattern.

The registration for handlers is done by the
Configuration processor of Apache. This Configu-

ration processor saves the information about all
registered handlers in the Hook handler registry
which also contains an order for these handlers.
When an interception point (hook) occurs,

Interceptor n

Module Core

Apache Core

Handler

register Handlers
(ap_hook_...)

Request Rec
(Context Information)

notify per Hook
(ap_run_...)

access / modify system
state through Apache API

Apache State

R

R

R Configuration
Processor
(Dispatcher)

Registered
Handlers

Apache Web Server

Modules

Figure 5: Compositional system structure showing Apache web serve and registered modules

41

Apache calls the handlers in the specified order,
which can be unique for each hook.

The described mechanism is shown in Fig-
ure 5, so that it resembles the compositional dia-
grams discussed earlier.

A module is split into a Module Core and its
Handlers. The Handlers are the interceptors and
the configuration processor is the Dispatcher. The
Module Core registers the Handlers via the Con-
figuration processor which saves the registration
information in the Hook handler registry. As the
Hook handler registry contains ordering informa-
tion for these handlers, the order for the currently
registered hook has to be passed to the Configura-
tion processor from the Module Core too. The
Dispatcher is called every time a hook is reached
during the processing of the apache core. The
data that is passed on to the Handlers, the con-
text, is in case of the Apache the Request Rec
structure. This structure which contains all rele-
vant information about the currently processed
request can be modified by the handlers. Addi-
tionally the handlers have direct access to the
Apache core via the Apache API. The Apache API
is a set of methods that allow the modifying of the
Apache State. This is why the access to the Core is
shown here as a modification of the Apache state.

Apache even extends this mechanism in a way
which is not shown in Figure 5. Handlers can de-
fine hooks themselves. This allows more flexibil-
ity as handlers can be called from within handlers
when a hook is reached during the processing of a
handler.

4. Discussion

4.1. Pros and Cons
of the Interceptor Pattern

Applying the Interceptor architectural pattern
offers a number of advantages:

• Interceptors decouple communication between
sender and receiver of a request. Any candidate
may fulfill the request depending on run-time
conditions.

• Users can change a system’s functionality
without changing its internal logic, possibly at
runtime.

• The Interceptor pattern supports system
monitoring and control through its context
agent interface.

The openness of the concept also implies some
disadvantages:

• System design gets more complicated. There is
a tradeoff between extensibility and lean
interface: introducing more kinds of
interception may bloat interfaces but also
makes the system more flexible.

• It is possible to introduce malicious or
erroneous interceptors. The system may be
more vulnerable.

• Unwanted interception cascades can occur
when one event triggers a change in system
state that in turn triggers other events.

4.2. Differences to Other Patterns
In contrast to its relative, the Chain of Responsi-
bility pattern [GOF95], the Interceptor pattern
allows more than one receiver to handle an event.
Additionally it can offer applications modifying
access to system behaviour.

Another pattern similar to the Interceptor is
the Reactor pattern [POSA00]. In the Interceptor
pattern the additional services, interceptors, do
not have to be present as the control flow is inde-
pendent of them. This is why the Intercpetor pat-
tern describes a transparent extension of a system.
The reactor pattern, however, is dependend on
such extensions and is therefore not suitable for
transparent event handling.

4.3. UML vs FMC Modeling
In our view using FMC to model a system con-
taining the Interceptor pattern has proven suc-
cessful. UML class diagrams capture mainly static
code structures and do not support greater levels
of abstraction well. With FMC it was possible to
describe the runtime compositional structure of
the system, which makes pattern principles more
clear. Besides, the differentiation between “inter-
ceptors” and “concrete interceptors” like in
[POSA00] became unnecessary. The figures pre-
sented here seem to be more instructive, univer-
sal, and also easier to understand than class or
collaboration diagrams.

5. Conclusion
The Interceptor pattern can be used to solve prob-
lems concerning the extensibility of base systems
by new services. It can therefore be found in

42

many real-world systems, such as web browsers
and servers, or middleware.

In our view using FMC for modeling has
proven successful in capturing the essential pat-
tern qualities in an implementation-independent
way. A class diagram for the Apache web server
would not even have been possible since it is not
implemented with an object-oriented program-
ming language.

6. References
• [POSA00] Douglas Schmidt, Michael Stal,

Hans Rohnert, Frank Buschmann (2000).
Pattern-Oriented Software Architecture Volume 2 –
Patterns for Concurrent and Networked Objects.
Chichester: Wiley.

• [GOF95] Erich Gamma, Richard Helm, Ralph
Johnson, John Vlissides (1995). Design Patterns –
Elements of Reusable Object-Oriented Software.
Boston: Addison-Wesley.

• [FMC] http://fmc.hpi.uni-potsdam.de
• [GKKS03] Bernhard Gröne, Andreas Knöpfel,

Rudolf Kugel, Oliver Schmidt (2003) The Apache
Modelling Project. Forschungsprojekt am Hasso-
Plattner-Institut Potsdam.
http://apache.hpi.uni-potsdam.de
/document/the_apache_modelling_project.pdf

43

Architecture Pattern
The Reactor

Nikolai Cieslak, Dennis Eder
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{nikolai.cieslak, dennis.eder}@hpi.uni-potsdam.de

Abstract
This paper presents the Reactor Pattern as described by
Buschmann et al [] derived from the ACE
Project []. It gives a brief overview of the essential
components. We analyze alternative modeling
approaches and the most common implementation
examples. Finally, the Reactor is compared to other
patterns.

POSA2000

A2000

ACE

Keywords: Pattern, Architecture, Event Handling,
Reactor, Dispatcher, Demultiplex

Introduction
Event-driven applications in a distributed system
must be prepared to handle multiple service
requests simultaneously.

Before executing specific services sequentially,
an event-driven application must demultiplex
and dispatch the concurrently-arriving indication
events to the corresponding processor
components.

The Reactor Pattern is a common measure to
handle occurring events and dispatch actions to
other components, which have been registered in
order to perform those tasks.

1. The Pattern

1.1. Principle
In order to handle occurring events and

dispatch actions to other components, the Reactor
keeps a list of handles1. The components register
handles and their respective event handlers with
this list. The concrete handler will be called when

its handle gets into a signaled state. Until this call,
the event handler stays inactive and does not
consume any processor time.

1 Handles are operating system resources like files,
communication ports etc. It is possible to wait for handles
using a blocking call, so that task switches can be reduced. In
that case the operating system will wake up the task when an
event occurs.

The Reactor performs an event loop, in which
it waits for any of the registered handles using a
blocking call or polling the list. If one or more of
these handles get signaled, the Reactor will parse
the list and call for each signaled entry its
respective event handler.

1.2. UML- Modeling

+handle_events()
+register_handler()
+remove_handler()

Reactor

+handle_event()
+get_handle()

Event_Handler

+select()
Synchronous Event Demultiplexer +handle_event()

+get_handle()

Concrete Event Handler A
+handle_events()
+get_handle()

Concrete Event Handler

Handle

«uses»
* notifies

*

*
dispatches

figure 1 – UML Model of the reactor pattern
[taken from POS]

This UML Model shows the structure of the
Reactor Pattern like it would be implemented in
an object oriented language.

The model shows that an event handler owns
a handle, which can be registered with the
Reactor and that the Reactor dispatches the event
handler and waits for events using an event
multiplexing mechanism.

44

1.3. FCM Modeling

Event HandlersReactor

List of Handles and their
Event_Handler

Handle registerer

Internal
Handle

Event Handler

Int.
memory

Event
Source

R

RDispatcherDe-
multiplexer

R

figure 2 – FMC block diagram of the reactor
pattern

The FMC model illustrates that an event handler
consists of a handle, which is registered with the
Reactor and stored in its “list of handles”, the
handler, which is called by the dispatching
mechanism of the Reactor, and internal memory.

It also displays that the Reactor is listening to
occurring events on event sources using a
demultiplexing mechanism.

1.4. Where can we find the pattern?
The use of the pattern is not limited to object
oriented languages as the use of an UML diagram
could imply. The Reactor Pattern is a more
general pattern and can also be found in low-level
programming like operating systems. The Reactor
Pattern is used for implementing software
interrupts (signals) in UNIX. You also find the
Reactor Pattern in the hardware interrupt
handling of “Microsoft Windows 2000” that uses
interrupt service routines, which can register
themselves and which will be called if the
interrupt occurs.

Another common use of the pattern is the
implementation of servers. The pattern can be
used to have one listening process, which waits
for occurring events or jobs and dispatches them
to other routines.

Examples for this implementation can be
found in the Apache web server or the INETD.

2. The INETD
The INETD (InterNET superDaemon) is a simple
daemon used in UNIX to implement a set of small
network services.

2.1. Principle
The INETD listens to a set of communication
ports (operating system handles) and dispatches
external programs or internal routines depending
on which port a connection request arrives. The
corresponding connection handle is passed to the
external program, so that the other program can
communicate with the opposite side.

In order to wait for connection requests, you
only need to have one program (the INETD)
running. After a connection has been established,
also external programs will be running until the
connection is closed again.

2.2. Usage of Reactor Pattern in INETD

Connection
requestConnection

request

Ext. Program

inetd (Reactor)

List of Handles and their
Event_Handler

Setup
read config file /create sockets
list sockets in list of Handles

Conn.
Handle

Event Handler

Int.
memory

Config file
/etc/inetd.conf

Client

R

Demultiplexer and Dispatching Unit
waits for handles using select()

dispatches Event Handler

R

figure 3 - FMC block diagram of the INETD

figure 3

The FMC block diagram in shows a
structure differing slightly from the pattern:

The event handlers do not register themselves
with the Reactor but a configuration file is read
and the handles are created by the setup routine.
When the connection request arrives the INETD
establishes the connection and starts a new
process by using fork() and exec(). This process
has access to the connection and executes the
associated program.

45

Read config
create list of services

Create socket,
save socket with
service list, add

socket to allsocketp-
list

For each service do

Select(allsockets)
wait for any socket

Connect()
Establish connection

to remote

For (;;)

If signaled:
fork() and execute

external program (or
internal routine) and

pass socket as
filedescriptor)

For each serivce do

INETD CLIENT

figure 4 - FMC sequence chart of the INETD

When the INETD starts a configuration file
(“/etc/inetd.conf”) is read. For each entry of the
configuration, the appropriate sockets are created
and the handles are stored in a set of handles.

The INETD waits using select() for any handle
of the list of handles to get into a signaled state. If
any handle has reached a signaled state the
INETD continues returning from the blocking call
of select(). It checks each handle of the list whether
it is signaled or not. If it is in a signaled state the
INETD accepts the connection and starts the
corresponding ... () using fork() and exec()2.

After all handles have been checked against
signaled states, the INETD will restart its event
loop and waits again using select() for new
occurring events.

3. Pattern Variants
There are many possible variations of the pattern.
This paper presents two very handy and
frequently used ones.

2 INETD links the socket representing the connection to the
file descriptors 0,1 and 2 (STDIN/OUT/ERR) of the new
process. The event handler therefore has to use these file
descriptors to read and write to the client.

3.1. Concurrent event handlers
Normally, the pattern incorporates a single-
threaded reactive dispatching design. That means
that handlers use the thread of control of the
reactor.

In this variant, event handlers can run in their
own thread of control (see INETD). This allows
the reactor to demultiplex and dispatch new
indication events concurrently with the
processing of previously dispatched event
handlers.

 In FMC, this can be modeled as multiple event
handler actors coordinated via multiple request
channels by the Dispatcher. For simplicity, we
merge them into a single unit, as shown in

.
figure

5

figure 5 - FMC block diagram of the Reactor
Pattern with concurrent event handlers

figure 5

Event HandlersReactor

List of Handles and their
Event_Handler

Handle registerer

Handle

Event Handler

Int.
memory

R

R

R

R

R
Event

Source

Demultiplexer
and

Dispatching Unit

new with this
variation

key :

Patterns, which are recommended for
implementing concurrent concrete event
handlers, are

 Active Object
 Leader / Followers
 Half-Sync / Half-Async

Details follow in the Composition Section.

3.2. Concurrent synchronous event
demultiplexer

In its standard version, the single synchronous
event demultiplexer is called serially by a reactor
in a single thread of control.

In this variant several synchronous event
demultiplexers are called concurrently on the
same handle set by multiple threads. It obviously
correlates with the same capability of the Win32
WaitForMultipleObjects() function. The
corresponding FMC model can be derived from

 by adding multiple demux/dispatch
units. This is shown in . figure 6

46

Reactor Event Handlers

List of Handles and their
Event_Handler

Handle registerer

Handle

Event Handler

Int.
memory

Demultiplexer
and

Dispatching Unit

Event
Source

R

using
waitForMultipleObjects()

new with this
variation

key :

figure 6 - FMC block diagram of the Reactor
Pattern with concurrent synchronous event
demultiplexers

The main advantage of this variation is, that it
improves application throughput, by allowing
multiple threads to simultaneously demultiplex
and dispatch events to their event handlers.

On the other hand, its implementation can
become much more complex and less portable,
such that the Dispatcher might have to perform
reference counts or the Reactor might have to
queue calls to the Reactor’s procedures for
registering and removing event handlers
(Command Pattern[GoF95]) to defer changes until
there is no thread dispatching an event handler.

4. Pattern Composition in Apache

4.1. Acceptor/Connector
The reactor in combination with the
Acceptor/Connector pattern [POSA2000] is
common for designing server applications that
use TCP, such as INETD. The
Acceptor/Connector pattern basically correlates
with the Gatekeeper pattern []. This paper
focuses on latter pattern, since it has already been
modeled in FMC. The demultiplexer and the
event handlers of the Reactor can be mapped to
components of a fine-grained Gatekeeper[]
model as shown in .

PGM

PGM
figure 7

figure 7 - FMC block diagram of Acceptor /
Connector with Reactor

TCP/IP Communication Service

Acceptor

Sockets

acceptor

connector

client

R

Service handler 1

Service handler n

R

R

R R

Demultiplexer

Event handler

acceptor-side of
‚acceptor/connector’

data
Reactor

R
R

Apache ships with a Worker MPM. In order to
identify pattern components in this MPM, it is
useful to think of a two-level Reactor.
Demultiplexing, dispatching and handling is
done twice for each request namely at listener and
worker level as shown in . figure 8

figure 8 - Behavior of Apache’s Worker MPM –
dynamics of an Acceptor / Connector ?

child process

restart_loop()/ap_mpm_run()/create_child_processes()/create_start_thread()

start
worker

start
listener

listener thread
initialization

terminate
worker queue

wait for idle
worker

listener
may exit

register as idle

wait for connection
in worker queue

process
connection

worker
queue

worker info
queue

queue terminated

worker thread
initialization

workers
may exit

worker thread
clean-up

demux()

handle_event()

acceptor of ‚acceptor-connector’

wait for
connection

put connection
in queue

Unfortunately, the design as outlined here has
some performance drawbacks on massive traffic.
The reason is probably the queue construction.
All idle threads block on a single shared
‘condition variable‘ (pthread) until a new job
becomes available. When triggered, an
unspecified notify() of any blocked thread wastes
resources.

47

Bushmann et al [] propose the
following abstract solution: Each thread has its
own condition variable so that a single, suitable
thread can deterministically be notified.

POSA2000

POSA2000

POSA2000

POSA2000

POSA2000

POSA2000

Two example implementations of this derivate
can be found in the Apache httpd : the Leader
MPM and the Threadpool MPM.
Details on both MPMs follow next.

4.2. Leader/Follower
The Leader/Follower pattern provides an
efficient concurrency model. Its structure contains
a pool of threads to share a set of event sources by
taking turns in demultiplexing events that arrive
on these event sources and synchronously
dispatching the events to application services,
which process them. More details can be found in
[].

There is a problem with its standard
implementation. Implementing a coarse-grained
Leader/Follower design burdens high
complexities: Programming involves mechanisms
to demultiplex handle sets. These in turn, involve
native operating system calls. Even worse, all that
must be done in a highly concurrent context.

Applying higher-level patterns to compose a
fine-grained Leader/Follower design makes it
easier to decouple the I/O and demultiplexing
aspects of a system from its concurrency model,
thereby reducing code duplication and
maintenance effort. illustrates the actor-
role-dynamics specified by the Leader / Follower
pattern in conjunction with the reactor’s
components, as implemented in the Apache
Leader MPM.

figure 9

figure 9 FMC block diagram of Leader / Follower
Pattern

Leader /follower

thread pool
thread

Communication service

client

thread

thread

leader reactor
detector demux dispatcher evt. handler

processor reactor
detector demux dispatcher evt. handler

follower reactor
detector demux dispatcher evt. handler

The thread pool contains n threads with
variable structures. Roles specify the concrete
structure inside of the threads’ structure variance.
Every thread can have one of the three roles at a
time. Only one thread at a time can have the
leader role, and thus wait (‘detect’) for an event to
occur on a set of event sources. In the figure
temporarily inactive components are colored
blue.

4.3. Half-Sync/Half-Reactive
The Half-sync / Half-Async pattern []
decomposes services of a modeled system into
two layers (synchronous and asynchronous) and
adds a queuing layer between them to mediate
intercommunication of the two layers.

Half-Sync / Half-Reactive [] is an
implementation of the Half-sync / Half-Async
pattern. It combines the reactor’s event
demultiplexing components with the thread pool
variant of the Active Object pattern [].
Latter pattern decouples method execution from
method invocation.

Again, an example implementation can be
found in an Apache MPM - namely the Worker
MPM. It strongly correlates with the Worker /
Listener Pattern []. Latter has already been
modeled in FMC. Therefore, we use it as the
underlying structure in .

PGM

figure 10

figure 10 - FMC block diagram of Half-Sync / Half-
Reactive Pattern

Active ObjectReactor

Communication service

Listener Job queue
Worker pool

Worker 1 Worker n

client

The architecture’s partition into Reactor and
Active Object, as proposed by the Buschmann et
al [], is modeled as two grey areas.

48

5. Separation from other patterns

5.1. Proactor
Buschmann et al [] consider the reactor
pattern as a synchronous variant of the
asynchronous Proactor pattern. Like the Reactor,
the Proactor supports the demultiplexing and
dispatching of multiple event handlers.

POSA2000

POSA2000

POSA2000

POSA2000

 In the Reactor, these events are triggered
when indication events signal that it is possible to
initiate an operation synchronously without
blocking.

In contrast, in the Proactor, events are
triggered by the completion of asynchronous
operations.

5.2. Interceptor
In general, the Reactor as well as the Interceptor
pattern allows services to be transparently added
and triggered automatically when certain events
occur.

However, the Reactor is merely thought of as
an event-handling pattern, which tackles the task
of demultiplexing concurrent events from one or
more clients. Consequently, a Reactor’s dispatcher
forwards each event to exactly one event handler.

In contrast, the Interceptor’s core capability is
to access and configure ‘out-of-band’ services in a
framework. These services can then intercept at
any predefined point of the framework and can
cut across multiple layers in the architecture. A
key aspect is the services’ ability to control a
concrete framework’s subsequent behavior, when
a specific event occurs. In particular, services can
manipulate event contexts, a component type not
found in the Reactor. A dispatcher in the
Interceptor pattern usually forwards events to all
concrete interceptors that have registered for it.

In practice, the Reactor pattern focuses on
handling system-specific events occurring in the
lower layers of a communication framework,
while the Interceptor pattern helps to intercept
application-specific events at multiple layers
between the framework and the application.

6. Discussion

6.1. What are the main aspects of the
Reactor?

In our opinion, the reactor is a general pattern for
an event handling demultiplexing process. We do
not share the presentation of Buschmann et al
[], which suggests that it is an object-
oriented pattern.

We have found usages of the pattern
throughout all kinds of application, including
internet servers (INETD, Apache) and operating
systems (Windows 2000 and Unix). Although the
implementation differs slightly from Buschmann
et all [] we still consider it as the
Reactor Pattern.

6.1.1. Inetd
The INETD uses a slightly modified variant of the
pattern.

 The handlers do not register themselves with
the Reactor, but the list of handles and their
handlers is built from a configuration file. But for
all that, it is still about handling events using a
demultiplexing and dispatching mechanism and
for this reason still the Reactor Pattern in our
opinion.

6.2. Nomenclature of Pattern and
Components

The pattern and a component of the pattern carry
the name Reactor. This could be quite confusing
to differentiate, which components are considered
as part of the pattern.

In our opinion, the Reactor is the central part
of the pattern and all other components are the
environment of the pattern. Thus, the
environment could be modified slightly without
violating the pattern itself.

In contrast to Buschmann et al [] we
model the dispatcher as a subcomponent of the
Reactor component as we do with the
Demultiplexer. This contrast derives from
Buschmann’s object-oriented view, and
consequently from his implementation-oriented
considerations about class granularity whereas
we apply the somewhat more abstract FMC.

49

6.3. Detector
Arguably, the demultiplexer in most
implementations will merely consist of a simple
system call. Still, it is explicitly modeled as a
means of conceptual modularization. This also
allows easy substitution by a high-level
demultiplexer.

6.3.1. Leader Follower
In that sense, the Leader/Follower pattern points
to a similar problem. The pattern denotes
‘detection’ as an integral part of the entire request
processing, just before the demultiplexing phase.
Thus, it has been included in as a
Reactor’s component. It seems to be the only way
to correctly model the concurrent access of a
Leader and n Processors to the Reactor Singleton.
This is important to localize thread-safety issues.

figure 9

But in most cases, such a fine-grained view of
the Reactor is unnecessary, also in that ‘detection’
is already implemented by communication
services or others. However, Buschmann et al
[] do not mention this composition
problem at all.
POSA2000

[POSA2000] D. Schmidt, M. Stal, H. Rohnert and F.
Buschmann, Pattern-Oriented Software
Architecture. Wiley, 2000

7. Conclusion
The Reactor pattern is used in many different
ways. It is not limited to the object-oriented
world. As shown, it is used in procedural
programming, too.

The Reactor’s serialized, single-threaded event
loop can simplify the coordination of otherwise
independent event handling services. Variants on
the other hand, may bust the event loop’s
simplicity, but are tolerable to the extend

presented above.
In trivial implementations, the Pattern is part

of the operational system for implementing
software interrupts. In that case, architects and
programmers alike might still gain from the
Reactor’s conceptual encapsulation of native
event demultiplexing mechanisms, such as
Select(), WaitForMultipleObjects() and
WaitForSingleObject().

From a higher-level point of view, it is
particularly worth the extra structuring effort,
when effectively combined with other patterns to
support concurrent handling of events.

References

[AMP] The Apache Modeling Project,
http://apache.hpi.uni-potsdam.de

[ACE] The ACE Project
http:// www.cs.wustl.edu/~schmidt/ACE.html

[PGM] B. Gröne & A. Knöpfle, Pattern-Grafische
Muster, Beschreibungsmuster & Systemmuster,
Hasso-Plattner-Institute, Potsdam University 2000

[Douglas1] Douglas C. Schmidt, Reactor – An Object
Behavioral Pattern for Demultiplexing and
Dispatiching Handles for Synchronous Events,
Washington University, St. Louis,
http://www.cs.wustl.edu/~schmidt/PDF/reactor-
siemens.pdf

[Douglas2] Douglas C. Schmidt, Applying Patterns and
Framworks to Develop Object-Oriented
Communication Software, Washington University,
St. Louis

50

Abstract
Concurrency issues are among the hardest tasks to be
dealt with when designing a software system. While a
high concurrency degree may improve the system
performance it also bears the risk of further difficulties
due to the increased system complexity.

Connected to concurrency issues is the question of
whether services provided by the system should be
processed synchronously or asynchronously. At large,
the freedom to actually choose between the two
alternatives depending on the situation seems most
appropriate.

With the Half-Sync/Half-Async concurrency
pattern, we present a model of an architectural pattern
that allows services to be processed partly
synchronously and partly asynchronously.

Keywords: Patterns, Architecture, Concurrency,
Synchronous, Asynchronous, Modeling

1 Introduction
“Concurrent systems often contain a mixture of
asynchronous and synchronous service
processing” [POSA2000]. Taking this citation into
consideration, particular large-scale and complex
concurrent systems perform both synchronous
and asynchronous processing for different
reasons:

• Synchronous processing is generally used to
simplify programming.

• Asynchronous processing is often required due
to performance reasons.

Since the terms synchronous and asynchronous
are of substantial relevance for the closer
examination of the Half-Sync/Half-Async
pattern, a formal definition of these terms is given
in order to avoid misunderstandings and to
clarify their meaning.

In the context of both forms of processing, the

Half-Sync/Half-Async pattern introduces a
possibility to combine the need for asynchronous
processing and the benefits of synchronous
processing and to enable communication between
those two types of services. Therefore, three
layers are established, a synchronous layer
containing the synchronously processing services,
a corresponding asynchronous layer and a
mediating queuing layer.

In the following chapters, the architectural
components used to realize the pattern are
modeled in detail. Examples are given to improve
the understanding of the pattern. Finally, a
discussion about the method used to model the
pattern and a comparison to related patterns
conclude the paper.

2 Synchronous and asynchronous
The terms synchronous and asynchronous are used
in various fields of applications such as natural
sciences, sports and even everyday life. While our
common understanding of synchronous is to be
seen as more or less equivalent to that of the word
simultaneous, we will see that this definition is not
accurate enough for our purpose.

Both terms refer to the way executing entities
perform their actions with respect to each other.
The key criterion to determine whether these
actions are to be seen as synchronous or
asynchronous lies in their degree of temporal
coordination.

For a formal definition of the terms we use an
approach based on modified petri nets presented
in [FMC].

2.1 Synchronous
The expression synchronous means that the actions
are performed in a temporally coordinated
manner. Imagine a group of swimmers
performing synchronous-swim, moving

Half-Sync/Half-Async Concurrency Pattern

Robert Mitschke, Harald Schubert
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{Robert.Mitschke, Harald.Schubert}@hpi.uni-potsdam.de

51

simultaneously. Even if the swimmers swam in a
temporally shifted manner one would still say
that they do swim synchronously. Transferred to
the context of programming, functional system
components correspond to the executing entities
mentioned above. Components, which from a
code view might be represented as two modules,
with a module being a set of procedures and
variables, communicate with each other by means
of procedure calls. These procedure calls though
will usually result in the execution of actions
being temporally shifted and not simultaneous,
reflecting the fact that a processor can only
execute one instruction at a time. Interpreting the
petri net in figure 1 as a procedure call after
instruction a1, transferring control from
component A to B, gives us a good example for
this way of looking at things. After the transfer of
control, component A is inactive until component
B has finished its processing and only then
continues with its execution of instruction a2. This
behavior is synchronous due to the temporal
coordination. Thus, it seems appropriate to
generalize the definition of synchronous and to
consider the simultaneous execution of actions as
a special case of synchronous execution.

Taking this definition for granted we now
have to find a way to clearly define what
temporally coordinated exactly means. As already
mentioned, we use an approach based on
modified petri nets.

As described before, figure 1 shows two
entities A and B which carry out two actions a1,
a2 and b1, b2, respectively. Using two
synchronization points within the petri net
defines exactly one order of execution for these
actions. There is only one possible event series:
(a1, b1, b2, a2).

a1

a2

b1

b2

A B

synchronization
point

synchronization
point

Figure 1 Synchronous Processing

As a formal characteristic, actions are
performed synchronously if the corresponding
petri net allows only one order of execution.

Note that a trivial case of synchronous
execution is given if the number of considered
entities equals one: An entity is always
synchronous to itself.

2.2 Asynchronous
Analogously, the word asynchronous means that
the actions are not temporally coordinated. Like
in a badly organized teamwork where teams do
not cooperate properly, leading to poor
performance and misunderstandings, the actions
are uncorrelated.

As to the formal definition, asynchrony is
given if the petri net describing the possible event
series for the considered actions does not lead to a
single order of execution. For example, figure 2

52

a1

a2

b1

b2

A B

synchronization
point

Figure 2 Asynchronous Processing

lacks one synchronization point, thus resulting in
three possible event series: (a1, b1, b2, a2), (a1, b1,
a2, b2) and (a1, a2, b1, b2). An equivalent
characteristic is whether at any given point in
time while processing the petri net there are
concurrently possible transitions.

As with synchronous processing there is also a
trivial case in case of asynchronous processing:
two or more entities that are completely
decoupled, which implies that there are no
synchronization points, perform their actions
asynchronously.

Having defined the terms synchronous and
asynchronous on the basis of temporal
coordination, we now continue with the
presentation of the Half-Sync/Half-Async
pattern.

3 Pattern Core Components
Considering highly complex concurrent

systems, often a combination of synchronously
and asynchronously processing services is
provided in order to realize the system
functionality. Especially higher-level system
components make use of synchronous processing,
thus avoiding the complexities of asynchrony and
simplifying programming. In contrast to higher-
level components, lower-level system
components, often close to hardware-related
topics, are mainly implemented asynchronously,
either for performance reasons or, as in the case of
hardware issues, due to time requirements like

interrupt servicing.
These reflections lead to an intended system

that allows synchronous and asynchronous
services to coexist and to communicate with each
other (figure 3).

Intended system

Synchronous
service

Asynchronous
service

R

Figure 3 Intended System

In order to realize this intended system, an
additional layer is introduced. Its task is to serve
as an intermediary between the synchronous and
asynchronous services. It provides a queuing
mechanism that decouples the request of one
service from the servicing of another service
(figure 4).

Platform

Synchronous service

Asynchronous service

R

Queuing layer Queue

Figure 4 Platform

At this point communication is reduced to
basic message passing: two components are
considered to be able to communicate if they can

53

send messages to one another. The following
diagrams show the flow of control in the message
passing procedure for both directions:
asynchronous to synchronous (figure 5) and vice
versa (figure 6).

Sync
receive
messageRead from

event src
Process

event data
Create

message

Enqueue
message

Q

Dequeue
message

Read
message

queue
mutex

Process
message

notify

notify

External
Event
Source

Async
Service

Queuing
Layer

Sync
Service

adressee
known

reactive event
loop state

event 1
event n

receive event

blocking
state

Figure 5 Async to Sync Communication

Sync
send
message

Read from
event src

Enqueue
message

Dequeue
message

queue
mutex

Process
message

notify

External
Event
Source

Sync
Service

Queuing
Layer

Async
Service

Read
message

Create
message

Process
event data

notifyadressee
known

Q

event 1
event n

reactive
event

loop state

receive event

Figure 6 Sync to Async Communication

At the beginning of our observation, there is
an event which notifies a service, such as an event
of an external event source. Associated to this
event is a message which is read by the notified
service. The service processes the message and
will finally create and enqueue a message into the
queuing layer.

Note that whether a service of an adjacent
layer is considered synchronous or asynchronous
is to be seen in the context of the queuing layer: If
a service blocks on the call of the queue (Receive
in figure 5, send in figure 6), storing or retrieving
a new message, he is temporally coordinated with
the queue. If he does not block (Send in figure 5,
receive in figure 6), he works asynchronously.

Thus, depending on whether the service is
synchronous or asynchronous, he will or will not
wait until the message has been read by the
addressee or, if no specific addressee is defined,
by a random service. On the other side of the
queue, depending on the service’s type, the
service will or will not block on the procedure of
receiving the message. On both sides of the
queue, the asynchronous variant allows more
responsiveness since the service does not block on
an event to happen.

Note that this model of communication has
been simplified to a degree suitable for the
purpose of the examination. The aspect that
synchronous message passing (e.g. network
messages) often implies some sort of response
mechanism including information on the result of
the message handling, has been omitted.

In this chapter we outlined a queuing
mechanism used to provide an environment with
which synchronously and asynchronously
processing services can intercommunicate. Next,
we present examples to illustrate the pattern.

4 Examples

4.1 A Fast Food Restaurant
Thinking about fast food restaurants gives us a

good example of how the Half-Sync/Half-Async
pattern is used in everyday life.

As it can be seen in figure 7, there are two
types of agents within the restaurant: waitresses
and cooks. Further, there are two queues: a
burger storage place and an order storage place.

The waitress works synchronously, waiting for
a customer to appear and to place his order.
Obtaining an order, the waitress looks at the
burger storage place and collects the products. In
case a burger is currently not available, the
waitress has the option to forward the order to
one of the cooks, putting a message into the order
storage place and then waiting for the product to
arrive in the burger storage place. Finally, the
waitress receives the money for the meal and only

54

then is ready to serve a new customer.

Fast food restaurant

Waitress

Cook

 Burger
storage placeChicken

burger
Beef

burger
Pork

burger
Vegetarian

burger

R

Order
storage

place

Customer

Figure 7 A Fast Food Restaurant

Behind the burger storage place, the cook
works asynchronously. For the most part
preparing several burgers at a time and turning
over the meatballs as soon as they are done, he
does not wait for a specific order to arrive, which
would be synchronous behavior. Instead he
always keeps a specific quantity of each product
ready to be sold. Only periodically he will check
the order storage place to prioritize his work.

4.2 Sockets
A well-known example for an implementation of
the Half-Sync/Half-Async pattern is the socket
mechanism used in contemporary operating
systems.

Almost all operating systems which provide
multiprocessing or multithreading also offer a
way to react synchronously to asynchronous
events. Accessing a hardware device or reacting
to any kind of unpredictable input from outside
the system requires the synchronization of mainly
synchronously processing applications and
asynchronous system services. Events related to
networking issues belong to this category of
asynchronous events.

The use of the Half-Sync/Half-Async pattern
for the implementation of the socket mechanism
is based on employing the operating system
kernel to put threads to sleep and to wake them
based on the occurrence of events.

In order to send information via the network,
the synchronous application calls the kernel to
request the asynchronous network service for
service. The kernel then takes the request and

immediately puts the synchronous application
thread to sleep. It will also queue the request to
the asynchronous network service. Only after the
asynchronous service finished its task and after
the result of the request is available, the
synchronous application thread is woken and can
gather the result continuing to compute its
operation synchronously.

In case the synchronous application wants to
receive information it will analogously address a
corresponding request to the kernel. The kernel
will then put the application thread to sleep,
queue the request to the asynchronous network
service and only after it received the information
from the asynchronous network service it will
wake the synchronous application thread and
provide the result.

In both cases the application will remain
synchronous from its point of view. Pausing and
resuming the thread is transparent for the
application thread itself.

The asynchronous layer is usually
implemented as part of the operating system and
uses asynchrony techniques that are supported by
the hardware platform. These usually include
software and hardware interrupts that allow
notification and event handling for asynchronous
events.

4.3 WinNT IOCP
The Windows NT operating system mechanism
I/O Completion Port implements a variant of the
Half-Sync/Half-Async pattern: the Half-
Async/Half-Async pattern.

The IOCP does not support the
communication between synchronous and
asynchronous services but rather propagates
asynchrony to higher level asynchronous services.

Basically, the IOCP is a combination of a job
queue and an idle thread queue. It is supplied by
the operating system and needs the kernel to
provide its functionality.

The IOCP allows multiple threads to request
the IOCP to take care of an asynchronous I/O
operation. However, the call to the IOCP is non-
blocking. After asking the IOCP, the thread can
continue with other operations. Therefore, he is
considered asynchronous.

On the other hand, whenever a thread is ready
to process the result of any of the requests left
with the IOCP, it can offer its service to the IOCP.
If no I/O completion is available, the requesting

55

thread is blocked meanwhile.

Worker agent

R

IOCP
agent

Runable
thread limit

Events to
listen for

Idle worker
queue

Completed
jobs queue

Asynchronous service

put to sleep /
wake up

Figure 8 Structure of the IO Completion Port

The advantage of this approach is the number
of threads processing I/O operations may be
decoupled from the number of I/O operations.

The IOCP additionally adds support for
restricting the quantity of active worker threads.

It checks the status of all worker threads currently
registered with the IOCP. In case a certain
amount of threads is already active, threads
returning from servicing a request are put to
sleep.

This is done to minimize paging efforts and to
minimize the need for context changes, since
scheduling activity is minimized if only a few
threads are active.

A possible application of the IOCP is a web
server. A web server which mainly serves a
potentially large amount of requesters has to
spawn a lot of threads if many requests arrive.
Additionally, handling one request is a short
procedure and most tasks that incorporate a
handling of the request are again blocking calls.

Using IOCP a web-server needs only a small
number of threads to serve a potentially
unlimited number of clients. Each time a request
arrives and the limiting value of concurrently
processing workers is not reached, a worker
thread will receive the request and start handling
it. It will soon encounter a call to an asynchronous
service, like fetching a file from the hard disk, and
can reregister that call with the IOCP and serve
another client request.

The major challenge which the IOCP approach
includes is that the state of a single request
handling activity is no longer implicitly stored in

Enqueue request

Dequeue request

Enqueue result/
completion

Dequeue result/
completion

Issue
request

Request result/
completion

Retrieve
task

Process
task

interaction with
asynchronous
event source

Receive
result

undefined amount of time

end of interaction
or time out

Send
result

Higher Level Services IO Completion Port Lower Level Services

Process
something

Multiple synchronous and
asynchronous services
can connect concurrently
to the IOCP

Q

Q

Figure 9 IOCP Petri Net

56

the threads sequence of execution. Therefore the
higher level services need to store the state
information in a proprietary way. To manage this,
the IOCP concept includes means to match a
completion with a specific event source.

This context is shown in figure 9. Lower-level
as well as higher-level services work
asynchronously since neither of them blocks on a
call of the IOCP. The fact that the thread issuing a
request does not necessarily have to be the thread
which handles the corresponding completion
afterwards is shown by means of multiple
instances of synchronous and asynchronous
services.

5 Modeling the Pattern
When modeling the Half-Sync/Half-Async
concurrency pattern, the main task consists of
modeling dynamic structures since the static
structure of this pattern is reduced to an ordinary
three layer architecture: a synchronous layer, an
asynchronous layer and a mediating queuing
layer.

5.1 Static Structures
By comparing the modeling approach

presented in [POSA2000] using UML with the
FMC approach used in this paper one sees that,
despite the different graphical notations, the
structures resemble each other. In both cases a
hierarchical three layer approach is used to depict
the communication of synchronous and
asynchronous services via a queuing mechanism
(figure 4 and figure 10).

Sync Service 2

External Event
Source

Queue

Async Service

Sync Service 3Sync Service 1

<<interrupt>>

<<dequeues/enqueues>>

<<read/write>>

<<read/write>>

<<read/write>>

Synchronous
Service Layer

Queuing
Layer

Asynchronous
Service Layer

Figure 10 [POSA2000] Class Diagram

Another difference is the way of FMC of
modeling the locations where information is
stored within the hierarchy of layers. Modeling
channels as volatile storage places and the queue
as a persistent storage place contributes to the
understanding of the pattern’s mechanism:
information is directly transmitted to the queuing

layer where the information is kept until either
adjacent partner is available to retrieve the
information for further processing. The method
used in [POSA2000] based on UML using
dependencies does not allow such insights.

5.2 Dynamic Structures
Tightly related to the modeling of the pattern’s

dynamic structures is a clear definition of
synchrony and asynchrony. The description of the
pattern in [POSA2000] does not introduce clear
semantics of these terms.

Further, it is essential for the pattern’s
understanding to clearly describe the flow of
control during the inter layer communication. In
this context a distinction of two use cases
representing the two directions of communication
is advisable, since the usage of the queuing
mechanism - in the role of a sender as well as in
the role of a reader - differs between synchronous
and asynchronous services.

[POSA2000] describes only one of those use
cases. The authors use a UML sequence diagram
to model the asynchronous to synchronous
direction of communication (figure 11).

message

message

message

: External Event
Source

: Async Service : Queue : Sync Service

work()

enqueue()

read()

notification

notification

read()
work()

Figure 11 [POSA2000] Sequence Diagram

The sequence diagram does serve well to show
exemplary sequences of events but it does not
give thorough insight into the topic of exchanging
information via the queue. Even though the
diagram clearly shows the data flow no control
state is shown. Wait states of the synchronous
component are not considered either; the places
used in the FMC petri net exactly show in which
control state a synchronous service waits for an
asynchronous service to serve his request. Using

57

FMC we put emphasis on modeling these wait
states. However, the drawback of the FMC petri
net technique compared to the UML sequence
chart is that a petri net does not model data flows.
These, on the other hand, can well be integrated
in sequence charts. FMC models data flows using
block diagrams which represent static structures.
Depending on the readers taste, it can be
considered an advantage to include data flows in
sequence charts. However, trading in control state
information certainly is not an option.

On the other hand, both diagrams have
syntactical notations in common to clearly
separate concerns. Agents are well separated in
both diagrams.

In summary, both techniques fulfil the main
task to introduce the pattern. The intention of the
pattern is to leave a lot of freedom to the architect
or developer, depending on the application
domain. Therefore, more restrictions due to
increased degree of detail are not desirable.
However, the use sequence diagrams combined
with the lack of state information in any of the
UML diagrams is a major drawback for the
[POSA2000] approach which reduces the pattern’s
comprehension.

6 Comparison to Other Patterns
In general, the Half-Sync/Half-Async Pattern and
its variants do not strongly compete with other
concurrency patterns. Decoupling the
communication of two or more components is a
basic requirement which does not allow many
alternatives other than the use of queuing
mechanisms. The fact that contemporary
operating systems always use the Half-
Sync/Half-Async pattern when providing
asynchronous services supports this statement.

Other patterns which deal with concurrency
issues mainly provide a way to organize
processes or threads to efficiently serve a special

application domain or to minimize performance
problems within a given application domain such
as event handling. In this context they often use
or extend the Half-Sync/Half-Async pattern.
Examples for such patterns are the Reactor
pattern, the Leader/Follower pattern and the
Proactor pattern described in [POSA2000].

Mainly, most other concurrency patterns are
more specific than and not as general as the Half-
Sync/Half-Async pattern.

7 Conclusion
In this paper, we discussed the application and
implementation of the Half-Sync/Half-Async
pattern and its variants. We examined it is a
concurrency pattern used to decouple
communication between synchronous and/or
asynchronous participants, therefore using a
queuing mechanism.
The method of decoupling communication
between synchronous and asynchronous services
was well known and implemented several times
before the term “pattern” was used in software
engineering. Therefore, the Half-Sync/Half-
Async pattern does not describe a solution to an
unknown problem. However, the fact that the
technique has been made a pattern allows
developers to understand it to its full extend and
with less effort, giving a deeper level of system
understanding.

References

[AMP] The Apache Modeling Project,
http://apache.hpi.uni-potsdam.de

[POSA2000] D. Schmidt, M. Stal, H. Rohnert and F.
Buschmann, Pattern-Oriented Software
Architecture. Wiley, 2000

[FMC] Fundamental Modeling Concepts Web Site,
http://fmc.hpi.uni-potsdam.de

58

Abstract
The Leader/Followers pattern provides a high-

performance processing of concurrent events with low
latency. Its main component is a thread pool consisting
of processing, follower and one leader thread. The latter
is responsible for the dispatching of an incoming event.
Afterwards, it promotes a new leader and starts
processing the event. This minimizes locking overhead,
prevents failures caused by concurrent access to event
sources and works without data exchange between the
threads through shared buffers.

Keywords: Patterns, Architecture, Concurrency,
Multi-threading, Event handling

1. Introduction
The Leader/Followers pattern provides an
architecture for an event-driven , multi-threaded
application.

Event-driven means that the application reacts
to events, that occur on one or many event
sources, by running an event handler. There can
be various event handlers. The right one must be
chosen depending on the type of the event.

For working efficiently, such an application
should be multi-threaded. So, a huge amount of
events can be processed simultaneously by
running many event handlers concurrently, each
one in its own thread.

Well-known examples for this class of
applications are all kinds of servers, like web
servers or database servers. Here the events are
the requests which the clients send to the server.
The server reacts to the requests by starting the
appropriate event handler that processes the
request and sends a response back to the client.

2. Problem
Multi-threading has the advantage that several
events can be processed concurrently. But it
brings new problems that have to be considered.

2.1. Demultiplexing events
The events can occur on a lot of event sources. But
often it is not possible to associate an own
listener thread to each single event source,
because of scalability limitations of applications
or the underlying operating system and network
platforms.

Instead of this, the events must be
demultiplexed by a small number of threads. A
design goal is to find an efficient association
between event sources and threads.

2.2. Concurrency-related overhead
Running multiple threads concurrently produces
overhead like context switches, synchronization,
cache coherency management and inter-process
communication. Allocating memory dynamically
or creating a new thread for each incoming event
produces overhead, too. For efficient event
handling all this overhead should be as low as
possible.

2.3. Concurrent access to event sources
A multi-threaded application must include a
mechanism that prevents the threads from
accessing the same event source simultaneously.
Otherwise, data could be lost or corrupted or an
event could be processed twice. Additionally, this
mechanism must assure that the threads don’t run
into deadlocks.

Leader/Followers

Dennis Klemann, Steffen Schmidt
Hasso-Plattner-Institute for Software Systems Engineering

P.O. Box 90 04 60, 14440 Potsdam, Germany
{dennis.klemann, steffen.schmidt}@hpi.uni-potsdam.de

59

3. Solution
The Leader/Followers architectural pattern
describes an concurrency mechanism that
minimizes concurrency-related overhead and
prevents simultaneous access to event sources.
The events are handled by concurrent tasks,
which can be implemented by processes or
threads. In the following description threads are
used to explain the pattern.

3.1. Structure
The static structure of the pattern consists of two
basic elements: handles in a handle set and a pool
of threads that share a synchronizer.

A handle identifies an event source and is
provided by the operating system. An event
source can be a network connection or an open
file, for example. The handle to an event source
can generate events, like connect-requests or time-
outs, and queue them in an internal queue. The
handle set is a collection of handles and can be
used to wait for the occurrence of an event on any
of the handles. It returns to its caller when it is
possible to initiate an operation on a handle in the
set without the operation blocking.

The thread pool is a collection of a fixed
number of threads. The threads are created
during the initialization phase of the application
and are not terminated until the shut-down of the
application. The number of threads can be
adjusted for load balancing only. The threads are
responsible for detecting, demultiplexing,
dispatching and handling of the events. Therefore
the threads play three different roles in turn:
• Leader: waiting for a new event in the handle

set and demultiplexing it
• Processing: handling an event by running an

event handler
• Follower: waiting to play the leader role
While there can be multiple followers and
processing-threads, there is at most one leader
thread in the thread pool. For coordinating the
roles of the threads, the thread pool contains a
synchronizer, e.g. a semaphore or a mutex. The
follower threads queue up on the synchronizer
and wait to become the leader.

The processing threads dispatch the events to
event handlers, which implement a specific
service that is offered by the application. They are
started by calling a hook method in reaction to the

occurrence of an event and run in the context of a
processing thread.

Figure 1 shows the compositional structure
described above. It must be mentioned, that this
block diagram visualizes the structure at a certain
point of time. Because the threads change their
roles, the numbers of threads in each role differ. It
is possible that there is temporary no leader, no
follower or no processing thread.

Thread Pool

Synchronizer

Handle set

Handle

Get next
event

Client

HandleHandle

R

Leader
Thread

Follower
ThreadFollower

ThreadFollower
Thread

Processing
Thread running
Event Handler

R

Figure 1 block diagram showing the static
compositional structure

3.2. Dynamics
By playing different roles, all steps for processing
an event (detecting, demultiplexing, dispatching,
handling) can be done by the same thread.
Therefore context switches and data exchanges
between threads are not necessary. Figure 2
shows the connections between the roles and
when a thread changes its role.

Figure 2 Transitions between the roles

PROCESSING

LEADING FOLLOWINGBecome new leader

Processing completed,
there is a current leader

Processing
completed, no
current leader

New event

60

3.2.1. The leader role
The current leader thread is the only thread in the
thread pool which detects and demultiplexes new
events. Therefore it waits for the occurrence of an
event on any of the handles in the handle set. If
there is no current leader thread, because all
threads are in the processing role, incoming
events are queued up by the operating system
until a leader is available.

After detecting an event, the handle on which
the event occurred must be deactivated. So, it is
not possible that the next leader tries to access the
handle and to demultiplex the same event again.

The final step of the leader thread is to
promote a new leader. One of follower threads is
chosen to become the next leader thread that
waits for new events. The follower promotion
protocol can be implemented in different ways:
• LIFO order: The thread with the shortest

waiting time is promoted first. By promoting
the threads in last-in, first-out order, the CPU
cache affinity can be maximized. This improves
the performance of the system but requires an
additional data structure, that holds the order
of the follower threads.

• Priority order: If the threads run at different
priorities, it is useful to promote the follower
threads according to their priority. So the effect
of priority inversion can be minimized. This
ordering should be used for real-time
applications. A priority queue is required to
find the follower thread that has to be
promoted.

• Implementation-defined order: The easiest and
most common way is to use synchronizers
provided by the operation system like
semaphores, mutexes or condition variables.
The follower thread to promote is selected by
the operating system specific implementation
of the synchronizer. The use of native
operating system synchronizers is very
efficient.

If all other threads are in the processing role, no
follower is available. In this case the old leader
changes to processing role without promoting a
new leader. The leader role remains vacant until
any of the processing threads has finished event
handling.
3.2.2. The processing role
After a new leader thread is found, the event can

be dispatched to an event handler. The thread
that detected the event now plays the role of a
processing thread. It selects the appropriate event
handler and starts event handling by calling the
hook method. The event handler runs in the
context of the processing thread. So it can execute
concurrently with other processing threads and
the leader thread.

When event handling is finished, the handle is
reactivated, so that new events arriving on it can
be demultiplexed.
3.2.3. The follower role
A thread that has completed event handling can
try to become the leader thread again. If there is
no current leader, it can play the leader role
immediately. Otherwise the thread must wait for
the synchronizer as a follower until it is
promoted.

Become Leader
Detect event

Try to promote
new Leader

Cap.=Queue
size Deactivate

handle

Run event
handler

Reactivate
handle

Join
Thread Pool

Handle set

Thread

Thread Pool

Thread ...

Wait for event

Leader

Follower

processing

synchronizer

Figure 3 Petri net showing the dynamic structures
(with roles)

4. Relationship to other patterns
The Leader/Followers pattern describes an event
handling mechanism. Other patterns that deal

61

with event handling are the Reactor pattern and
the Half-Sync/Half-Async pattern.

The Reactor pattern uses a single thread
performing an event loop that listens for events.
After one or multiple events occurred, they are
dispatched to an event handler. If the event
handler doesn’t run in an own thread, it is not
possible to process multiple events concurrently.
So performance can be very low if a huge amount
of events must be processed. The performance can
be improved by running the event handlers in
own threads. But this produces overhead by
dynamically creating the threads and performing
context switches. So the Reactor pattern should be
used instead of the Leader/Followers pattern if
there are only few events and the time to process
an event is short.

The main benefit of the Reactor pattern is its
mechanism to dispatch events to the appropriate
event handlers. The event handlers can register
their handles with the reactor and are informed if
an event occurs on these handles. This can be
used in the Leader/Followers pattern. The leader
thread can demultiplex and dispatch events by
implementing the Reactor pattern.

The Half-Sync/Half-Async pattern distributes
event handling to synchronous and asynchro-
nous services. The service that detects events
passes a message to the processing service over a
queuing layer. In contrast, handling of a single
event is done synchronously by one thread in the
Leader/Followers pattern. That produces less
synchronization overhead and a queuing layer is
not necessary.

The Half-Sync/Half-Async pattern should be
used instead of the Leader/Followers pattern if
there are additional synchronization or ordering
constraints that must be addressed by reordering
requests in a queue before processing them or if
event sources cannot be waited for by a single
event demultiplexer efficiently.

5. Variants of the pattern
There are a couple of variants of the
Leader/Followers pattern. Some make use of
multiple leaders, others bind handles to a specific
thread.

5.1. Multiple leaders
In contrast to the standard pattern, in this case
there are several leader threads waiting for
events. Multiple leaders are necessary if the
handle set is divided into a certain amount of
subsets. This can occur when there are multiple
event sources like I/O, semaphore and/or
message queue events, as e.g. UNIX provides no
multiplexing function that can wait for those
sources simultaneously.
5.1.1. Relaxing Serialization Constraints
Some operating systems provide functions for
multiple threads to wait for a single handle set,
e.g. Win32’s WaitForMultipleObjects function,
which notifies only one waiting thread if an event
occurs. In this case, one can take advantage of
multi-processor hardware.
5.1.2. Leaders/Followers per handle subset
In this variant, every handle subset gets assigned
a thread pool with one leader and a certain
amount of follower threads. Thus, each thread is
limited to a specific handle set.
5.1.3. Multiple leaders and multiple

followers
Like the aforementioned variant, there are
(maximally) as many leader threads as handle
subsets. The difference is that there is only a
single thread pool. In consequence, all threads can
be used for any handle. When an event occurs, the
relevant leader promotes the new leader for this
handle subset. After having processed an event, a
thread checks if all handle subsets have leaders
assigned to them. If not, it gets promoted to
leader immediately. Otherwise, it becomes a
follower.

5.2. Bound handle/thread association
In some cases is it useful to assign a specific
thread to a handle, for example a front-end
server. If there is a request from a client which
needs a back-end server, the thread which
processed this event is well suited to handle the
response from the server and answer the client, as
this thread still possesses the needed context
information. In an implementation using this
variant, when an event occurs, the leader thread
checks if it is responsible for this event. If this is
the case, there is no difference to the standard

62

pattern. If not, the leader thread hands that event
off to the responsible thread and waits for the
next event. The responsible thread directly
processes the event, skipping the leader role.

Follower

Become Leader

Try to promote
new Leader

Deactivate
handle

Run event
handler

Reactivate
handle

Join
Thread Pool

Leader

processing
Deactivate

handle

Check
responsibility

Hand-off Responsible
for handle

Responsible
for handle

Detect event
Wait for event

Figure 4 Additions to the petri net for the bound
handle/thread association

6. Use Cases
As a high performance web server, the Apache
web server needs to process a lot of requests. It
makes use of the Leader/Followers pattern to
fulfill this requirement.

In Apache 1.3, the so-called “Request-
Response-Loop” [1] is responsible to handle the
client requests. In the follower role, the preforked
child processes try to acquire an accept mutex,
which is equivalent to the follower role. Once a
request comes in, one of the threads is promoted
leader, demultiplexes the event and processes it.
This means that the operating system chooses the
next thread to become leader. After having
processed the request, the thread waits until it can

access the accept mutex again.
Apache 2 provides 2 MPMs (Multi-Processing

Modules) that make use of this pattern. The first
one is the Prefork MPM, which behaves just like
the Apache 1.3. The other one is the Leader MPM,
still in experimental state, which implements the
pattern using a follower stack for leader
promotion. In that way, the followers get chosen
in LIFO order, making use of cache affinity, as it
is most likely that the new leader thread is still in
the cache. This eliminates the need to get the
thread and its context from memory, saving time
and memory bandwidth.

7. Related work

One of the most detailed descriptions of the
Leader/Followers pattern is written by Douglas
Schmidt et al. [2].

While the verbal description is very accurate
and insightful, the diagrams left something to be
desired. Some are not as comprehensive as they
could be, some are faulty – e.g. the state chart.
Figure 2 of this article shows the correct
transitions.

The complexity of the sequence diagram
indicates the difficulty in visualizing the
dynamics of multithreaded systems. One has to
look very closely to understand the dynamic
structure of this system – and still some questions
stay. For example, the time span of the event
processing is not shown.

In our opinion, a petri net is more suitable to
illustrate the behavior. Not only does it provide a
clearer look at the dynamics – due to the fact that
it has a very strict interpretation –, but also has
the advantage of a general flow over an
exemplary flow of the sequence diagram.

In addition, we made a slight change to the
behavior of the pattern inasmuch the thread does
not leave the thread pool after completion of the
processing role, as we saw no real advantage of
that design decision.

8. Conclusion
The Leader/Followers pattern is useful in a multi-
threaded, event-driven environment which is
required to handle a lot of request simultaneously
and with minimal latency.

63

This is due to the fact that no data has to be
exchanged between the threads, as the thread
dispatching the event is the very same that
processes it. This minimizes locking overhead and
makes shared buffers obsolete. When the follower
get promoted in LIFO order, cache affinity is
another important factor for a system that meets
the abovementioned requirements.

Usually, there is a fixed amount of threads and
only one leader at maximum, though a variant
with more leaders can occasionally be more
efficient.

Bibliography
[1] Bernhard Gröne, Andreas Knöpfel, Rudolf Kugel,

Oliver Schmidt (2003) The Apache Modelling Project.
Forschungsprojekt am Hasso-Plattner-Institut
Potsdam. http://apache.hpi.uni-
potsdam.de/document/the_apache_modelling_pro
ject.pdf

[2] Douglas Schmidt, Michael Stal, Hans Rohnert,

Frank Buschmann (2000). Pattern-Oriented Software
Architecture Volume2 – Patterns for Concurrent and
Networked Objects. Chichester: Wiley

64

	Introduction
	The Seminar
	Literature

	Pipes and Filters (André Langhorst and Martin Steinle)
	Broker (Konrad Hübner and Einar Lück)
	Microkernel (Eiko Büttner and Stefan Richter)
	Component Configurator (Stefan Röck and Alexander Gierak)
	Interceptor (Marc Förster and Peter Aschenbrenner)
	Reactor (Nikolai Cieslak and Dennis Eder)
	Half--Sync/Half--Async (Robert Mitschke and Harald Schubert)
	Leader/Followers (Dennis Klemann and Steffen Schmidt)

