
Improving Knowledge Transfer at the Architectural Level:
Concepts and Notations

Frank Keller, Peter Tabeling, Rémy Apfelbacher, Bernhard Gröne,
Andreas Knöpfel, Rudolf Kugel and Oliver Schmidt

Hasso Plattner Institute for Software Systems Engineering
P.O. Box 90 04 60, 14440 Potsdam, Germany

{keller,tabeling,apfelbacher,groene,knoepfel,kugel,schmidt}@hpi.uni-potsdam.de
Abstract
This paper presents a vocabulary of concepts and a cor-
responding graphical notation called Fundamental
Modeling Concepts (FMC) to describe the conceptual
architecture of large and complex software systems. The
main objective of this approach is to improve knowledge
exchange, at the architectural level, between the partic-
ipants of software development projects using a semifor-
mal graphical notation. The focus of FMC is not to
represent code structures but rather to describe system
concepts and architectural rationale. FMC is not bound
to a specific programming paradigm and thus enables
communication about any type of software systems. We
present both a metamodel and a graphical notation suit-
able for the intended use. Furthermore, we will summa-
rize our results achieved in applying FMC to software
projects of different sizes and scopes.

Keywords: software architecture, conceptual view,
architecture description, system modeling

1. Introduction

The development of large software systems requires the
collaborative effort of many people. Today, it is com-
monly the case that multiple or even distributed groups
work together on a common system. Hence, many per-
sons need to understand and communicate technical
issues on different levels of abstraction. Only if all par-
ticipants in software development share a similar under-
standing of the system can software be developed in an
efficient manner. Thus, communication between
humans represents a crucial aspect for the success of
large software development projects.

Communication on the level of detailed software
design is well understood. For this level of abstraction
the Unified Modeling Language (UML) [1], [2] has
become a widely accepted de facto standard in research
and industry.

On higher levels of abstraction, communication con-
cerning what is generally known as the architecture of a
system remains difficult and uncertain [3]. The com-
monly used object-oriented approach reflects concep-
tual problems on this level of abstraction [4].

Research and practice have shown that the architec-
ture of a complex system includes different high-level
structures spanning from conceptual structures to source
code structures. Thus, the representation of system
architectures evolved into what is known as architec-
tural views [5], [6].

In this paper we will focus on the conceptual archi-
tecture view which plays a key role in attaining a com-
mon overall understanding of a system being planned or
already built (for evolutionary purposes). It embodies
the structures in the minds of the system designers dur-
ing the planning and constructing of a system - in con-
trast to the source structures of the implemented system.
It explains how the requirements from the application
domain map are transferred onto the technical structure
of the system. Thus, it enables one to discuss system
aspects such as compliance with nonfunctional require-
ments, general concepts, the system’s components and
their interaction, without getting lost in implementation-
specific details.

2. Requirements of conceptual architec-
ture descriptions

It has been pointed out that transferring knowledge
about conceptual system architecture plays a key role in
large-scale software development. Therefore, it is
worthwhile to use comprehensive means for this kind of
communication, i.e. to provide a uniform set of concepts
and corresponding notations whose sole purpose is to
deal with knowledge related to the conceptual system
architecture. This represents the guiding idea behind the
approach presented in this paper.

To use UML for this purpose was rejected, because
we share the opinion that “(UML) is ultimately designed
to support the object-oriented view of software design”
and that “UML currently does not provide a satisfactory

solution to the modeling of architectures.” [7] Hence,
“by using the same notation (UML) to describe software
architecture, we run the risk of further blurring the dis-
tinction between architecture and implementation” [6].

A technique for describing conceptual software archi-
tectures has to meet certain requirements in order to
facilitate interpersonal communication at this level:

Abstraction: The ability to describe the conceptual
architecture on different levels of abstraction is of major
importance. In addition, it has to be possible to describe
different conceptual aspects on the same abstraction
level separately. This should lead to a system represen-
tation reducing the complexity embodied in the techni-
cal details of the system implementation.

Simplicity: If a notation and its underlying concepts
are highly complex, it will not be easily adopted as
means for daily communication between software
developers. It should be easy to learn and easy to apply
for the majority of software developers. For that reason,
a description technique should be reduced to a few ele-
mentary concepts and notational elements.

Universality: A sound trade-off between simplicity
and conceptual richness has to be made in order to
explain the desired architectural concepts of a system.
The result should be a description technique which is
still simple but also offers enough expressive power to
cover a wide range of system types. This implies that
neither the notation nor the conceptual basis is bound to
a specific implementation paradigm. Furthermore, mod-
eling of the embedding environment of a system has to
be possible as well.

Separation of concerns: The description of complex
systems has to include different conceptual aspects. It is
important for an architectural description technique to
support the separation of these aspects by offering com-
prehensive means for their illustration. This separation
of concerns should be fostered by the conceptual basis.
A coherent set of structures which are common to all
types of systems should build the core of the technique.
The choice of notation should support the distinction of
the different views and responsibilities during system
development.

Aesthetics and secondary notation: Since descrip-
tions of conceptual architectures are made for the human
reader, informal criteria for diagram quality must not be
ignored. Valuable layout cues, called secondary nota-
tion, are crucial for comprehensibility [8]. Architectural
diagrams will be studied by many persons, so making a
clear and appealing layout is worth the effort. Therefore,
the notational elements of an architectural description
technique should support proper layout including the
easy formation of graphical patterns (“secondary nota-
tion”).
3. The FMC approach

In this paper we present FMC (Fundamental Modeling
Concepts), an approach for describing the conceptual
architecture of software systems using a semiformal
graphical notation. It is based on [9],[10] and has been
further refined in [11],[12],[13].

FMC has been developed to meet the requirements
listed in section 2. One of the primary problems encoun-
tered when dealing with descriptions of large systems is
the complexity embodied in many technical details. One
strategy of FMC for reducing complexity is to distin-
guish clearly the following types of structures which are
fundamental aspects of any system architecture (separa-
tion of concerns):

• Static structures:
- compositional structures
- value structures

• Dynamic structures

• Relationships between different FMC models

FMC uses bipartite graphs to depict the structures.
The corresponding conceptual and notational elements
of FMC will be discussed below. A complete system
model is a representation of the whole system on a cer-
tain level of abstraction. If we restrict our interest to
structures appearing at a certain point in time, two types
of structures have to be distinguished - compositional
structures and value structures. On the other hand, we
can observe system behavior over time.

3.1 Compositional structures

Any system can be seen as a composition of collaborat-
ing components called agents [14]. Each agent serves a
well-defined purpose and communicates via channels
(and shared storages) with other agents. If an agent
needs to keep information over time, it has access to at
least one storage where information can be stored.
Channels and storages are (virtual) locations where
information can be observed.

The agents are drawn as rectangular nodes, whereas
locations are symbolized as rounded nodes1. In particu-
lar, channels are depicted as small circles and storages
are illustrated as larger circles or rounded nodes (see
Figure 1). The possibility to read information from or
write information to a location is indicated by arrows.
Agents and locations are identified by descriptive tex-
tual labels. As the example shows, it is useful to stretch
agent or location nodes in order to achieve a cleaner lay-
out facilitating “secondary notation”.

An agent must have write-access to at least one
shared storage or channel in order to be able to partici-

1. This notation originates from [15]

pate in the system. Each location must be accessible (by
reading and writing) to at least one agent. Arbitrary
complex structures can be described because there are
no further restrictions regarding the number of connec-
tions between locations and agents. For example, it is
possible to describe simple channels (connecting only
two agents) as well as broadcast channels (connecting
more than two agents -see Figure 1). Storages can be
used by one or more agents, allowing the description of
shared and non-shared storages.

In general, agents and locations are not related to the
system’s physical structure. The compositional structure
facilitates the understanding of a system, because one
can imagine it as a physical structure (e.g. as a team of
cooperating persons). Nevertheless, on lower levels of
abstraction a direct mapping to physical parts of the sys-
tem might be possible.

3.2 Value structures

Each location of the compositional structure holds a unit
of information, called a value. A value can be a simple,
unstructured value such as an integer as well as a struc-
tured value such as a tree or the whole content of a data-
base.

FMC offers a dedicated diagram type for the descrip-
tion of value structure types. It is based on entity/rela-
tionship diagrams [16] with several modifications and
additions. Again, the primary symbols are simple - cir-
cles or rounded nodes for entity sets and rectangular
nodes for relations. Entity nodes and relation nodes are
connected by undirected edges (see Figure 2). This
choice of symbols was made because rounded nodes
resemble the elliptic nodes often used to symbolize sets
(Venn diagrams), whereas a rectangular node can be
interpreted as a simplified relational matrix.
Further diagram elements frequently used with FMC E/
R-diagrams (see also Figure 2):

• Relation names, entity names and role names
can be placed within or near the corresponding
graphical element. If an entity has attributes
these can be listed below the entity name using
smaller typefaces (see upper left of Figure 2).

Figure 1: A FMC compositional structure diagram

A2

S4A3

S3

A4

A1

shared
storage

non-shared
storage

simple channel

agent

broadcast channel

S1

S2
• Cardinalities can be specified by placing tex-
tual constraints near the respective edges con-
necting entity nodes to the relation node. A
constraint text placed near an entity node E
specifies how often each element of E partici-
pates in the relation.

• A relation participating in another relation
(thus forming an entity set itself) is surrounded
by a rounded node (see “Couple” in Figure 2).

• Functions and one-to-one-mappings are identi-
fied by simple arrows and bidirectional arrows,
respectively (see Figure 2).

• An entity set can be partitioned in disjunctive
subsets (see bottom of Figure 2). Usually this
is shown by placing the subset nodes within
the entity set being partitioned. Whenever
there is another independent partitioning of the
same entity set, this can be depicted using a
triangular partitioning symbol connecting
these partitions with the whole.

3.3 Dynamic structures

If we look at a system over a period of time, its dynamic
behavior can be observed. A fundamental concept is the
event, an instantaneous value change occurring at a cer-
tain location and at a certain point in time. Whereas
events are elementary with respect to observability,
operations are elementary with respect to activity, i.e. an
operation is the “smallest” activity an agent can per-
form. When performing an operation an agent reads val-
ues from several locations and writes a derived value
(the operation’s result) at a certain location. Operations
can be triggered by events and in turn produce events.
This leads to causal dependencies of events.

This notion of an operation covers a variety of opera-
tion types. For example, a state change is an operation
where an agent reads a value from a certain storage and

Figure 2: Notational elements of FMC value structure
diagrams

A B

Function A→B

A B

One-to-one
mapping

Man
weight
age

Couple

Woman
weight
agewifehus-

band

≤ 1 ≤ 1

Wedding
day

Regis-
trar

Marriage

1

≥ 1 ≥ 1

 Partitioning of entity set E
into the entity sets X, Y, Z

XE Y Z

A

B

C

Independent
partitioning of
entity set E
into the entity
sets A, B, C

writes a new value at the same storage. An agent per-
forms an output operation when the operation’s result is
written to a channel. If an agent reads a value from one
location and writes a copy of it to another location, a
pure transport operation is given, etc.

FMC diagrams for dynamic structures are based on
Petri nets [17], namely place/transition nets with several
enhancements. Transitions symbolize event types, oper-
ation types or complex activities, whereas places
(mostly) symbolize control states. The text label of each
transition node briefly describes the semantics of the
corresponding operation or activity. Each transition
belongs to an agent of an associated compositional
structure. If a diagram covers the behavior of different
agents, additional places and edges are introduced to
describe causal dependencies resulting from communi-
cation, see Figure 3.

Each transition belongs to an agent of an associated
compositional structure. To show the responsibilities of
agents, it is possible to partition the set of transitions and
place them in distinct areas (“swim-lanes”). These areas
are separated by dashed lines, symbolizing the domains
of the corresponding agents (see Figure 3).

Control states are symbolized by places, whereas data
states are handled differently to reduce complexity:
operation/activity descriptions identify data state
changes occurring at the corresponding storages of the
compositional structure. In addition, branch conditions
are expressed as data state predicates placed at edges
leading to conflicting transitions1 (see Figure 3, below
“receive request”).

Because Petri nets can easily be used to describe con-
currency they are a first choice for the description of
complex system behavior. FMC offers an improvement
over conventional place/transition nets, one which
describes recursion as well. This extension has been

1. An extended firing rule has to be applied where transi-
tions are only ready for firing when both the correct con-
trol state and the correct data state is given.

Web server

static page
requested

receive request

dynamic page
requested

send requestlook up
static page handle request

return result
generate page

return page

send request

render page

Data base serverWeb browser

*

*

*

*

* places introduced for
modeling communication

Figure 3: A FMC dynamic structure diagram
suggested in [18] and will not be discussed here further.
Concurrency can be described for two cases: either mul-
tiple sequential agents working independently or a sin-
gle agent showing concurrent behavior.

Dynamic Compositional Structures. Complex systems
frequently show a compositional structure which
changes over time. These changes are usually caused by
activities of certain system agents. For example, a dis-
patcher agent in a server system creates and removes
agents which are processing incoming requests. FMC
facilitates the modeling of such systems by allowing a
part of the compositional structure to appear as a (struc-
tured) value of a storage. By changing the “value” of
such a storage, an agent can alter the system‘s composi-
tional structure. (Such storages are symbolized using a
dashed border - see also Figure 4). Thus, dynamic com-
positional structures are the outcome of special types of
operations creating and destroying agents.

3.4 The FMC conceptual metamodel

The FMC E/R diagram in Figure 5 presents an overview
of the terms and their relationships presented in the pre-
vious sections. All elements of the presented FMC struc-
tures and their interdependencies are covered by this
metamodel. The concept of ports has been omitted here
for simplicity. It is described in detail in [19].

3.5 Relationships between FMC models

At one level of abstraction the conceptual architecture of
a system can be modeled using the three different FMC
structure diagram types. The compositional structure
diagram connects all FMC diagram types of one abstrac-
tion level to each other.

With complex systems it is usually essential to pro-
vide system models on different levels of abstraction.
In this case multiple models are given which are hierar-
chically ordered by the refinement relationship: model
A is refined by model B if B is derived from A by apply-
ing a refinement decision to A. This means iteratively
replacing certain model elements with elements of a
lower level of abstraction. (This idea does not imply
“top down” development.) Such refinement decisions
can affect all three FMC model structures.

Figure 4: A FMC dynamic compositional structure

A2

A1

S2

structure
variance storage

S1

agent
managing
structure
variance

agent being
dynamically
created/destroyed

A3

The simplest type of refinement decision is given if a
data type of a higher-level model is refined by data types
of a lower-level model. For example, a real number (an
unstructured value) can be refined by a pair (mantissa,
exponent) of integers (a structured value).

Each operation of a dynamic structure can be refined
by a complex activity at a lower level. FMC allows this
activity to be a sequence of operations, a set of concur-
rent operations, or even a mixture of both. Thus, a tran-
sition representing a single operation in one diagram can
be described in another (refined) diagram as a complex
dynamic structure. When refining operations, the corre-
sponding events, read or write accesses, are mapped to
their respective lower level events.

In the case of complex systems, many interesting
refinement decisions affect the compositional structures
of a system. For example, data replication means that
one storage is being refined by a set of storages contain-

Figure 5: The FMC conceptual metamodel

Compositional Structure

Location

Value Structure

Dynamic Structure

triggers

Point of Time

Operation

Read Access

Write Access

≥ 1

Observability

Interval
Start

pre post

consists of> 1

Observability

Interval
End

non-
shared

Channel

is
connected

to

≥ 2

performs

is
connected

to

shared

is
connected

to

Storage

≥ 2

Agent

Event

is Outcome of

Causal Ordering

un-
structured structuredValue
ing (usually) identical values. In general, a location can
be refined by one or more locations, whereas an agent
can be refined by an agent or a compositional structure.

A simple case of agent refinement is the functional
decomposition of agents, where each agent is replaced
by a corresponding compositional structure. FMC is not
limited to this simple case but allows the description of
more sophisticated designs. One example is the refine-
ment of a set of agents (of identical type) by a single
multiplexed agent. Interesting types of refinement rela-
tionships are given when the refined structure of an
agent changes over time, as for example, in the case of
load balancing.

Refining elements of the compositional structure
often implies the need for refining corresponding
dynamic structure elements as well. For example, if an
agent is replaced by several cooperating agents, it might
be necessary to split operations of the original agent into
several operations performed by multiple refined agents.

4. Application of FMC

The FMC approach has been applied to facilitate the
analysis and synthesis of software systems of different
sizes and different application domains.

FMC was useful in providing a quick overview of the
planned conceptual architecture and the core concepts
during the design and development of smaller object-
oriented system (25-50K LOC). Once the FMC models
were in place implementation was straight forward [20].
The FMC models were very helpful during later evolu-
tion of a system because the architecture was easy to
understand, even though the students who developed the
first system release had already left the project by that
time [21].

FMC has been applied successfully in the evolution-
ary development of a large embedded system in the tele-
communications sector [22]. The entire system was
developed by more than 300 engineers (hardware and
software) over the last 10 years (>2.5M LOC in the cur-
rent release). The FMC case study took place in a sub-
project of about 20 developers at two different locations.
They had been developing new functionality for a sys-
tem of about 400K LOC for more than one year. Captur-
ing the conceptual architecture in an ad hoc fashion was
an explicit part of the group’s development process for
several years. Thus, it was a straightforward process to
apply FMC in this case. The architecture documentation
consists of FMC diagrams supplemented with sequence
diagrams as commonly used in the telecommunications
sector. Furthermore, the required detailed design docu-
mentation was done using UML class and sequence dia-
grams. FMC was introduced to the project through the
system architects. After a short time the individual

developers responsible for detailed design and imple-
mentation became familiar with the notation. The ability
to show different levels of abstraction using a notation
that is not related to code structures has been pointed out
as one major advantage of FMC. Moreover, the clear
distinction between conceptual architecture and object-
oriented design through the usage of different modeling
notations has been mentioned as one strength by the
developers. This distinction gave the developers the
freedom to carry out their creative design activities
within the given restrictions of the conceptual architec-
ture without being “demoted” to programmers who are
responsible for the unalluring tasks concerning a pre-
conceived design. The success of the FMC approach in
this case is reflected in the fact that FMC is currently
being applied to further development projects in the
same group.

Furthermore, FMC has been used to analyze and doc-
ument the core of a very large-scale business application
- the SAP System R/3. This project took place over sev-
eral years in the industry environment. The architecture
of the System R/3 Basis (about 5M LOC) has been ana-
lyzed to get an overview of the system and to illuminate
many single concepts. As a result of the analysis a set of
architectural description manuals [23] have been writ-
ten, serving as conceptual reference for SAP developers
and delivering the foundation for internal and external
training in System R/3 core technology. The main chal-
lenge of this project was to extract the core architectural
elements from such a large system and to present them
on an appropriate level of abstraction.

Finally, FMC has been applied to recover the archi-
tecture of a medium scale open-source application, the
Apache HTTP web server. This architecture analysis
and FMC modeling has been carried out in the context
of a student course. The results were later presented to
academia and industry [24],[25]. These presentations
have shown that it is possible to explain architecture and
technical concepts in an efficient manner. After a brief
introduction to FMC an audience is able to follow the
presentations and grasp an understanding of the sys-
tem’s conceptual architecture.

5. Discussion of the FMC approach

The application of FMC has shown that FMC is
suited to capture the conceptual architecture of large and
complex software systems. FMC has been used to facil-
itate communication between the project members on a
conceptual level.

Based on our experiences we suggest that an explicit
architecture phase, dealing with conceptual issues,
should be introduced to software development pro-
cesses. This helps to define robust and stable architec-
tures before applying detailed design. During this stage,
FMC is able to provide high level abstractions to
describe software systems in order to get a common
understanding between project members. The FMC
compositional structure diagrams can be seen as mental
maps which assist in getting a quick overview of a sys-
tem’s structure. From this point the reader may explore
associated behavioral aspects, value structures or refine-
ments of agents in further detailed diagrams. This leads
to the ability to vary the level of detail according to the
desired needs without being lost in a mass of description
detail.

We consider a clear distinction between the notations
used for describing conceptual architecture and low-
level design as crucial for the development of a system.
Our experiences show that this approach has worked
well when using FMC to represent the conceptual archi-
tecture and UML for the object-oriented design. In some
cases it has been difficult to identify which level of detail
should be covered by the architecture description and
when to move towards design. For the case study in tele-
communications, the description at the architectural
level stopped when the work package of a single devel-
oper was well defined. UML and IDL descriptions have
been used to define common interfaces for guiding the
transition towards low-level design.

The use of bipartite graphs is fundamental for the
FMC notation. The simplicity of the notational elements
has the advantage of being easy to draw and to distin-
guish on a white-board or on paper. This is important
since no computer-based tool such as a diagram editor is
usually used between software developers during archi-
tecture and design sessions.

FMC provides the freedom to stretch and bend the
defined notational elements in order to improve layout
quality and to enhance their expressiveness supporting
secondary notation.

We have recognized that some readers interpret any
bipartite graph as a Petri net and are confused by other
applications of this kind of graphical pattern. Neverthe-
less, the simplicity of the FMC notation means that only
little effort is required in learning to read and draw the
diagrams. This is possible because the terminology of
the conceptual basis is restricted to the few coherent
concepts shown in Figure 5. Unlike other modeling
techniques, the FMC approach does not offer multiple
alternatives to express the same aspect. For each of the
fundamental structure types (compositional structure,
value structure and dynamic structure), there is one
comprehensive type of diagram providing strict separa-
tion.

FMC is not bound to an implementation paradigm
which enables conceptual modeling for any kind of sys-

tem. When moving toward implementation-specific
design, an appropriate notation has to be selected (e.g.
UML).

One problem in FMC models is that it is not possible
to automatically keep the source code and models in a
synchronous state. This has to be ensured by an appro-
priate software development process. However, the high
level abstractions of a system - once in place - do not
usually change drastically over time.

6. Conclusion and future work

FMC provides a notation and conceptual basis for
describing the conceptual architecture of software sys-
tems to enhance human comprehension. Furthermore,
FMC has been successfully applied to facilitate architec-
ture recovery and development of software systems of
different sizes and scopes. FMC is primarily focused on
human comprehension of complex conceptual architec-
tures. Thus, we advocate using FMC within an explicit
conceptual architecture phase before applying low-level
design (e.g using UML).

Besides the results already mentioned, our future
work will address the following issues:

Architectural Patterns: Typical large architectural
patterns can be observed in many systems. Using FMC
diagrams to visualize these patterns would help to model
systems in a more efficient way. This would also
enhance system synthesis and diagram comprehension
due to the advantages of secondary notation.

FMC Methodology: In order to use FMC efficiently in
the industry environment it is necessary to provide a
development methodology (supported by tools) with
guidance on how and when to deploy FMC in large scale
development. Here it is important to clarify the coupling
between FMC, at the architectural level, and UML, for
fine design.

7. References

[1] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[2] OMG. OMG Unified Modeling Language Specification Version
1.4. Object Management Group Document formal/01-09-67,
2001.

[3] J. Bargary, K. Reed, “Why We Need A Different View of Soft-
ware Architecture”. Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA’01). 2001.

[4] P. K. Laine, “The Role of SW Architecture in Solving Funda-
mental Problems in Object Oriented Development of Large
Embedded SW Systems”. Proceedings of the Working IEEE/
IFIP Conference on Software Architecture (WICSA’01). 2001.

[5] P. Kruchten, “Architectural Blueprints - The “4+1” View Model
of Software Architecture”. IEEE Software. vol. 12, no. 6,
November 1995, pp. 42-50.
[6] C. Hofmeister, R. L. Nord, D. Soni, “Describing Software Archi-
tecture with UML”. Proceedings of the First Working IFIP Con-
ference on Software Architecture. 1999.

[7] T. Weigert, D. Garlan, B. Selic et al, “Modeling Architectures
with UML”. UML 2000, LNCS 1939. Springer, 2000.

[8] M. Petre, “Why Looking Isn’t Always Seeing: Readership Skills
and Graphical Programming”. Communications of the ACM.
vol. 38, no. 6, June 1995, pp. 33-44.

[9] S. Wendt, “Einführung in die Begriffswelt allgemeiner Netzsys-
teme”, Regelungstechnik, vol. 30, no. 1, 1982.

[10] S. Wendt, “Der Kommunikationsansatz in der Software-Tech-
nik”. Data Report, vol. 17, no. 4, 1982.

[11] W. Zuck. Ein Beitrag zur konsistenten Mitdokumentation von
Systementwürfen auf der Basis von Strukturplänen. Disserta-
tion, Universität Kaiserslautern, 1990.

[12] A. Bungert. Beschreibung programmierter Systeme mittels Hier-
archien intuitiv verständlicher Modelle. Shaker, Aachen, 1998.

[13] P. Tabeling, Der Modellhierarchieansatz zur Beschreibung
nebenläufiger, verteilter und transaktionsverarbeitender Sys-
teme. Shaker, Aachen, 2000.

[14] S. Wendt, Nichtphysikalische Grundlagen der Informationstech-
nik - Interpretierte Formalismen. 2nd Ed. Springer, Heidelberg,
1991.

[15] Deutsches Institut für Normung e.V.: Betrieb von Rechensyste-
men - Begriffe, Auftragsbeziehungen. DIN 66200, Beuth, Ber-
lin, 1968.

[16] P. Chen. “The Entity-Relationship Model - Towards a Unified
View of Data”. ACM Transaction on Database Systems, vol. 1,
no. 1, 1976, pp. 9-36.

[17] W. Reisig. Petrinetze. 2nd Ed. Springer, Heidelberg, 1986.

[18] S. Wendt. “Modified Petri Nets as Flowcharts for Recursive Pro-
grams”. Software - Practice and Experience, vol.10, 1980, pp.
935-942.

[19] P. Tabeling, “Ein Metamodell zur architekturorientierten Bes-
chreibung komplexer Systeme”. Proceedings of Modellierung
2002, GI-Lecture Notes in Informatics, Tutzing, 2002.

[20] M. Kappel, Entwurf und Implementierung eines Simulators für
Register-Transfer-Netze. Diplomarbeit, Universität Kaiserslaut-
ern, 1995.

[21] R. Kugel, Entwurf und Implementierung eines Codegenerators
zur Integration neuer Bausteintypen in einen RTN-Simulator.
Studienarbeit, Universität Kaiserslautern, 1997.

[22] M. Kappel, P. Monz. TND Architecture Documentation of Seg-
ment ITMF. Project Documentation, Alcatel SEL AG, Stuttgart,
2001.

[23] SAP AG. Reports of the SAP Basis Modeling Group. SAP-AG,
Walldorf, 1990-2001.

[24] B. Gröne, A. Knöpfel, R. Kugel. The Apache modeling project.
http://www.hpi.uni-potsdam.de/apache, 2002.

[25] B. Gröne, A. Knöpfel, R. Kugel. “Design recovery of Apache
1.3 - A case study”. (to appear) The 2002 International Confer-
ence on Software Engineering Research and Practice, 2002.

	Improving Knowledge Transfer at the Architectural Level: Concepts and Notations
	Abstract
	1. Introduction
	2. Requirements of conceptual architecture descriptions
	3. The FMC approach
	3.1 Compositional structures
	3.2 Value structures
	3.3 Dynamic structures
	3.4 The FMC conceptual metamodel
	3.5 Relationships between FMC models

	4. Application of FMC
	5. Discussion of the FMC approach
	6. Conclusion and future work
	7. References

