
Abstract
In recent publications, two prominent approaches can
be found which deal with the complexity of large soft-
ware systems. First, there is the object–oriented ap-
proach, where ”objects“ and ”classes“ are the prevalent
abstractions. The second type of view is focused at the
”architecture“ of software systems, where a system is
usually considered to be a structure of ”connectors“
and ”components“, or more general, a structure of
active and passive elements.

While both approaches have their benefits, they
seem to be contradictory with respect to their basic ab-
stractions. We view this inconsistency a severe obstacle
to the effective application of architecture–based meth-
ods in the context of object–oriented technology.  

This paper addresses the problem by suggesting a
set of alternative mappings between objects or classes
and elements of architecture–based models. Criteria on
choosing a mapping as well as some examples are also
included in the paper.
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1. Introduction

1.1. Object Orientation versus Architec-
ture?

It is a widely accepted insight in academia and
practice that building large software systems re-
quires high–level abstract models. They are often
named software architectures or system architec-
tures [1] [2]. On the other hand, there are the es-
tablished object–oriented methods [3] [4]. Unfor-
tunately, there is no clear relationship between ar-
chitecture–oriented models and object–oriented
models. Architecture–oriented models seem to be
a supplement to OO models presenting a com-
pletely different, alternative view. Some advocates
of architecture–oriented approaches even state

that object orientation is incompatible to the archi-
tecture–oriented view because their basic ab-
stractions are different. In the context of software
architecture, the terms ”component“ and ”connec-
tor“ typically represent fundamental elements,
whereas object–oriented methods focus on objects
and classes [5] [6] [7].

In our opinion, ”architecture–oriented think-
ing“ should not replace ”object–oriented thinking“
and vice versa. Each point of view has shown its
practical relevance and usefulness. Nevertheless,
it is necessary to clarify the relations between both
views and the respective terminologies.

1.2. Limitations of Object–oriented
Modeling

Many text books dealing with object–oriented
methods promote the “seamlessness“ of object ori-
entation: It seems that in all phases—analysis,
design and implementation—the same concepts
and terms can be used [8, p.2]. However, various
authors question this ”seamlessness“ because the
understanding of the term ”object“ strongly de-
pends on the context and, in some cases, yields
even contradicting interpretations. For example,
Kaindl views objects during OO analysis and OO
design as ”inherently different things“ [9]. He cri-
ticizes that the difficult transition from analysis to
design models is usually described as much too
simple in the literature. Habra complains about a
similar ambiguity in the interpretation of the term
”class“ and says that this ambiguity is only hidden
by the repetitive use of the same word—”class“
[10].

We share the point of view that there is no
common and precise understanding of the term
”object“. In particular, there is no defined inter-
pretation in the context of architecture–oriented
models.
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1.3. Architecture–oriented Models
There are many definitions of the term
”architecture“. Often, this term is used as syn-
onym for ”structure“. Looking at the description
of a system, for example a car, we find two types
of structures: The structure of the system (the car)
and the structure of the description itself (the car's
blueprints). Software is a description of a system
which can be interpreted by a computer. In this
paper, “software architecture” refers to software
structures while “system architecture” refers to
the intended system being described by the soft-
ware.1  

While the terms to describe software structures
are common, like e.g. ”procedure“, ”module“ or
”class“, describing system structure has no stand-
ards yet. In this paper, we will use the termino-
logy and notation of the Fundamental Modeling
Concepts (FMC) [11] [12]. While Architecture De-
scription Languages (ADL) use the terms ”com-
ponent“ and ”connector“, FMC introduces more
general elements: Active components called
”agents“ which perform all operations, and pass-
ive ”storages“ or ”channels“ for storing or trans-
mitting information.

The architecture models in this paper are sys-
tem architecture models. Although UML class dia-
grams show the software structure of some ex-
amples, software architecture is not in the focus of
this document.

2. Mappings between Objects
and Architecture–oriented
Models

In the literature, three prevalent interpretations of
objects can be identified which we call ”analysis
view“, ”abstract data type view“ and ”object
agent view“—they will be discussed in the follow-
ing sections.

While these interpretations are somewhat con-
tradicting, each of them is useful in a certain con-
text. Instead of seeking a ”new, integrated inter-
pretation“ of objects, we relate the various inter-
pretations to architecture–oriented system models,
i.e. we present different alternatives to map ob-
jects to architectural elements of a system.

1 Michael Jackson writes: ”Software is a description of a ma-
chine. We build the machine by describing it and presenting
our description to a general–purpose computer that then
takes the attributes and behavior of the machine we have
described“ [14].

In addition to the three interpretations men-
tioned above, we present further interpretations:
Low–level mappings deal with problems that can
only be understood and solved when looking at
the implementation and execution of an ob-
ject–oriented program. High–level interpretations
allow the mapping of collections of objects to
high–level architectural models.

2.1. Common Mappings

2.1.1. Analysis View
A typical interpretation of objects in the context of
object–oriented analysis is to view an object as an
abstraction of the so–called “problem domain”.2

This “analysis view” is of no further interest in
this paper because, during the analysis phase, ob-
jects do not (yet) correspond to elements of archi-
tecture–oriented models.

2.1.2. Object Agent View
Considering an object to be an agent is a common
interpretation in object–oriented design. An object
agent is an active and abstract component of the
system. Calling a method is interpreted as sending
a message to a receiver object which carries out
the desired operation and responds with an an-
swer. Only an object agent has access to attributes,
the data associated with an object. Methods de-
scribe which messages the object can handle, what
operations on its data it can perform and which
messages it sends to other objects [13, p.6].

A typical example for this view in context of
architecture is a dispatcher. GUI toolkits usually
use a dispatcher object to react to GUI events like
mouse movement to or from a defined area, or
button press or release events. The dispatcher
doesn't process the event itself but calls a method
of a certain object which has been registered as
handler for this event.

The block diagram in figure 1 views objects as
agents consisting of methods and an internal stor-
age holding object data. Only the object's methods
have access to the internal storage. 'Knowing' oth-
er objects by their object ID (reference) is symbol-
ized by a channel between them used to send mes-
sages. A direction symbol indicates which object
sends a message and which receives.

2 See [3, p.39]: “Object–oriented analysis is a method that ex-
amines the requirements from the perspective of the classes
and objects found in the vocabulary of the problem do-
main.”



This view is charming because of its vivid asso-
ciation with active system components responsible
for certain tasks and exchanging messages. Unfor-
tunately, the usefulness of this view scales down
the same way the size of the total system scales
up: Given many objects of different type, this view
would result in an extremely fine granular system
architecture consisting of a myriad of object
agents—an ”anthill architecture“. Furthermore, al-
though this view implies that object agents can op-
erate concurrently, there is a strict sequence result-
ing from the order of method procedure calls. In-
troducing true concurrency with threads results in
severe comprehension problems—for example, no
encapsulation of object data exists between two
threads, and two threads can execute the same
method procedure with the same object. To avoid
inconsistency, additional mechanisms like a lock
management have to be used.

2.1.3. Abstract Data Type View
Another common interpretation can be called the
”abstract data type view“. Here, an object is seen
as a storage for an abstract data type which is de-
scribed by the corresponding class. Bertrand
Meyer presents this interpretation of objects—he
defines a class as ”an abstract data type equipped
with a possibly partial implementation“ [4, p.142].
The class not only lists the operation types (i.e. the
method signatures) of the abstract data type, it
may also provide the implementation of the data
storage (i.e. the attribute storages) and the imple-
mentation of the operation types (i.e. the method
bodies). From this point of view, an object can be

seen as a passive system component (a storage),
and a method call can be interpreted as an opera-
tion which is performed on the object—rather than
a message causing the object to perform an opera-
tion. The internal structure of the storages is hid-
den—the model does not reflect knowledge about
the implementation of a data type.

Figure 2 shows a typical example of this type
of view. The ”Vector“ class defines an abstract
data type ”Vector“ with operation types ”scale“,
”add“, ”rotate“ etc. The class also provides the im-
plementation of the Vector data and the operation
types. From an abstract point of view, an instance
of the ”Vector“ class can be seen as a storage
which holds a certain ”Vector“ value. Other sys-
tem components can operate on this storage,
thereby being restricted to the operation types
defined for the abstract data type.

If we would derive an architectural model
from this view, the system would solely consist of
a collection of storages (i.e. objects) for abstract
data types. Since only storages with related opera-
tions have been specified, there must also be some
active component doing these operations. There-
fore, we can only assume a generic component,
called ”the system“, which performs all operations
on the data. This system ”architecture“ does not
foster system understanding, because is too prim-
itive and generic.

In case of concurrent systems, the abstract data
type view shows further limitations. The fact that
an abstract operation is actually implemented by
several operations on object attribute data leads to
inconsistency problems which, in turn, can only be
discussed on the level of threads and their ac-
cesses to attribute data. Unfortunately, the ab-
stract data type view hides these implementation
details—which makes it impossible to understand
problems of concurrent accesses and discuss their
possible solutions.

Figure 1 Object Agent View: A dispatcher (Block dia-
gram)
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2.2. Low–level Mappings
The views described in section 2.1 mirror the idea
of encapsulation: Either the non–public attribute
storages are local to the object agent or—in case of
the abstract data type view—they are not shown
at all. However, there are situations where lower
level models of objects are needed which explicitly
show the inner details of an object.

2.2.1. Data Record View
Taking a closer look on how an object–oriented
program is executed, you soon learn that an object
is just a data record in memory. This view—which
we call the ”data record view“—explicitly shows
the ”inner structure“ of objects, i.e. an object is de-
scribed as a set of storages for attribute data. In
case of the ”Vector“ example (see above), the stor-
ages for the vector components x, y and z now be-
come visible—see figure 3. The implicit ”system“

agent of the abstract data type view is also de-
scribed in more detail—each thread is modeled as
an agent operating on the (shared) objects. Each
thread also has a private storage for its state, e.g.
for local variables.

In contrast to the abstract data type view (see
above), the discussion of inconsistency problems
in the context of multithreading is now possible.
The architecture model makes clear that object
data is shared between threads—see figure 3. In a
sense, multithreading breaks encapsulation be-
cause the implementation of methods and attrib-
utes causes effects (i.e. inconsistencies) beyond the
scope of an object. In order to retain (or rees-
tablish) encapsulation, thread's operations on ob-
ject data must be synchronized, e.g. by using

locks. Thread agents can set and release locks by
sending corresponding requests to a central lock
manager (e.g. an operating system's mutex ser-
vice).

This view also provides an elegant way to de-
scribe object persistency. A persistency manager
can access object data directly, for example, to in-
crease performance. The persistency manager typ-
ically needs additional information for the map-
ping between attributes and database fields—see
figure 3 below.

2.2.2. Processor View
The processor view refines the thread agents of
the data record view:

A program thread is implemented by a virtual
processor executing the code of the program de-
scribed by the classes. The thread–local data con-
sists of the Program Counter (PC), the stack for
parameters and local variables and other data.
Each virtual processor has read access to the code
in the program storage. In this view we show the
code a compiler generates from an OO program
and the (virtual) machine which executes it. For
example, we see that the code provides a (default)
constructor procedure for every class which re-
serves memory for a new object data record and
initializes the fields of the record.

2.3. High–level Mappings
The views presented above allow objects to be
mapped to certain elements of architectural sys-
tem models. While these mappings foster a more
intuitive understanding of a single object in a cer-
tain context, they do not solve the ”granularity
problem“: Reflecting each object as a dedicated
element in an architectural model still yields mod-
els of (too) extreme granularity—larger systems

Figure 3 Data Record View (Block diagram)
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with thousands or millions of objects cannot be
modeled this way. Furthermore, such models
would only present short–lived snapshots, be-
cause objects are created and destroyed very fre-
quently. Hence, mappings are needed where a
(dynamic) collection of objects can be mapped to a
(static) high–level architectural element.

2.3.1. High–level Abstract Data Type View
A quite obvious way to model a set of objects is to
extend the idea of the abstract data type view.
There are cases where the definition of a single
class is not sufficient for the realization of an ab-
stract data type. For example, a data type ”tree“
could be needed which stores arithmetic expres-
sions as binary trees. For this purpose, one might
define the classes as shown in figure 5. Instances
of classes derived from ”Node“ would represent a
tree's nodes and a ”Tree“ object would be the
placeholder of the whole tree. This object provides
methods to access the whole object structure, such
as calculating the value of the tree (i.e. the value of
the corresponding expression).

The basic idea behind the tree–related classes is
to provide the possibility to store trees. Hence, at a
higher level, the complete object set holding a cer-
tain tree can be viewed as a single storage for an
abstract data type ”Tree“—see upper right corner
of figure 5. This ”high–level abstract data type
view“ yields a single storage as an abstract, com-
pact model of an object set. This model remains
valid even if the underlying object structure
changes over time—at the higher level, only the
current value (i.e. the tree) in the storage is

changed. The operation types defined for the ab-
stract data type (e.g. tree evaluation) are not im-
plemented by a single method but the combined
methods of several classes (here: the ”evaluate“
methods).

2.3.2. High–level Object Agent View
It is sometimes reasonable to combine many ob-
jects to one agent. Take for example a persistency
service which consists of a singleton object of the
persistency manager class and a set of class
agents, one singleton object for each persistent
class.

Figure 6 shows the persistent objects, the per-
sistency service, the transaction service and the
database. The task of the persistency service is to
create or load persistent objects from the database
and to save altered object data whenever the
transaction service requests it in case of a commit.
The persistency manager just keeps a list of the
classes, while the class agents read and write ob-
ject data and create objects; they have all informa-
tion about their class and know which objects
have been altered. Class agents are therefore
factories for persistent objects and part of the per-
sistency service. The persistency manager is the
representative of the persistency service. The de-
composition of the transaction service is not
shown here—for example, the tree of the (nested)
transactions can be implemented with objects of a
transaction class managed by a singleton object of
a transaction manager class.

Figure 6 High-level Object Agent View: Persistency
Service (Block diagram)
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This architecture has been chosen for the pro-
ject ”Object Services“ at SAP in 1999. The goal was
a new persistency and transaction service for
ABAP Objects, an OO extension of the R/3 pro-
gramming language ABAP. The services had to fit
as seamless as possible into the R/3 framework
and cooperate with existing non–OO applications
[15].

2.3.3. Functional View
The high–level views presented above have in
common that one architectural element (storage or
agent) is mapped to many objects. However, this
one–to–many mapping is not appropriate if the ar-
chitectural model primarily represents a function-
al decomposition. Figure 7 shows an architectural
model of a simple graphic editor where each com-
ponent provides a certain functionality, namely
editing, displaying, printing and persistency.
The central storage holds all data describing the
graphic drawing currently being modified. The
agents rely on certain components of the underly-
ing platform, e.g. the file system.

While this model is very useful for presenting a
system overview, a one–to–one or one–to–many
mapping of architectural elements to objects
would not result in an appropriate software struc-
ture. Following object–oriented design principles,
we should define a class ”GraphicObject“ with
subclasses for the different types of graphical ele-
ments, i.e. rectangles, circles etc.—see class view
in figure 7. The implementation of displaying,
editing and other operations depends on the im-
plementation of the graphic element data. Hence,

each of the classes should not only define a stor-
age format for graphic data but also contain
methods corresponding to the various operation
types. (Of course, additional classes had to be
defined beside these classes.)

The example shows a many–to–many mapping
of objects to architectural elements. The collective
object attribute data is mapped to the ”Graphic
objects data“ storage, and all methods implement-
ing a certain functionality (e.g. editing methods)
are mapped to a corresponding agent (e.g. the
”Edit Agent“). We call this mapping the
”functional view“ because the architectural model
reflects the functionality provided by the pro-
gram.

2.4. Guidelines for Choosing a View
Each of the different views presented above is
suitable depending on the context and the type of
object(s) under consideration. Hence, some criteria
for choosing one of these views should be given:

The object agent view (sections 2.1.2 and 2.3.2)
is suitable if an object's main purpose is con-
trolling other parts of the system. In this case, the
object can be understood best as an active system
component which communicates with other com-
ponents by sending requests to them. Such objects
are often singletons and have a method which
runs (potentially) endless (e.g. the dispatcher's
loop in section 2.1.2). If several objects closely in-
teract to fulfill a control function, they can be
modeled as one controlling agent, according to the
high–level object agent view.

The abstract data type view (sections 2.1.3 and
2.3.1) should be chosen if the main idea behind a
class is to provide a data type which is missing in
the programming language (e.g. the vector type in
2.1.3). In this case, methods implement operations
which are typically defined with purely operation-
al semantics, e.g. by defining pre– and post–con-
ditions. If a set of objects is used to implement a
data structure, the high–level abstract data type
view is a good way to model this.

In general, the data record view (section 2.2.1)
is helpful if the implementation details of methods
and attributes cannot be ignored and objects
”must be seen as data records“. Multithreading
with shared objects is one example.

If aspects of code execution have to be de-
scribed, the processor view (section 2.2.2) yields a
helpful model. It is also useful to explain dynamic
code management like ”class loading“ in Java or
object migration between processor nodes.

Figure 7 Functional View (Block diagram / Class dia-
gram)
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The functional view (section 2.3.3) is valuable
to keep the overview even if the system becomes
very complex. For example, the functional view
helps to check if all requirements (especially func-
tionality) have been taken into account, it shows
how the components interact with each other and
the environment, it shows what kind of data is
stored and which agents have access to it, etc. In
contrast, an pure OO model like a class diagram
would not offer this insight because data defini-
tions and functionality are spread across classes,
and communication links (channels) between
agents are only implicitly given by certain method
calls. The functional view is also useful whenever
non–OO or even non–software components are in-
volved in the system.

3. Conclusion and Future Work
We presented several approaches to interpret ob-
jects in the context of architecture–oriented
models. These mappings do not only foster a bet-
ter, more intuitive understanding of objects. They
also span a conceptual bridge between the ob-
ject–oriented and the architecture–oriented view
of software systems.

While we could give some criteria for the ap-
plication of the views, we do not think that the
mapping between object–oriented models and ar-
chitecture–oriented models is always straightfor-
ward. It is a non–formal, creative task which re-
quires experience. Further research should sup-
port this task, for example, by conserving these ex-
periences as architecture patterns. Furthermore,
additional views on objects are possible. For ex-
ample, objects can be viewed as values or (broad-
cast) channels.

The mappings presented in this paper can be
used both during system analysis or reengineering
and during system construction. In the context of
reengineering, the views help deriving high–level
architectural models from an existing object–ori-
ented code base. During system construction, con-
ceptual architecture models can be used as a basis
for object–oriented design (see [15] or [16]). Here,
further research is necessary to establish a corres-
ponding, refined development process.
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