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Abstract

This paper presents an approach to the description of dis-
tributed and concurrent systems in which a system’s compo-
sitional structure and behavior are closely related. Central
ideas behind this approach are the concept of virtual loca-
tions which is derived from our intuitive understanding of
physical locations as well as the separation of multiple mod-
eling levels.

In the academic community, the terms “concurrency”
and “distribution” are not used in a consistent manner, thus
resulting in additional difficulties in the description of dis-
tributed and concurrent systems. The modeling approach
presented here leads to a better understanding of these terms
because it allows for both a clear differentiation of concur-
rency and nondeterminism and different interpretations of
distribution. Furthermore, the interdependence of concur-
rency and distribution is illuminated.
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1. Introduction

When we consider the large number of textbooks and lec-
tures which deal with concurrent or distributed systems
there is no doubt that these systems are common and impor-
tant topics in academic teaching and publications. Further-
more, concurrency and distribution are typical
characteristics of current commercial systems.

In this context, it seems unacceptable that the terms “con-
currency” and “distribution” continue to have different def-
initions for different people. When studying related
textbooks or papers, one can easily find contradicting inter-
pretations of these terms as well as authors who criticize that
inconsistency.

1.1 The Problem of Differentiating Concurrency
and Nondeterminism

In publications about concurrent systems, the interpretation
of “concurrency” often depends on the author or on the the-
oretical background. Nevertheless, two prevalent types of
interpretations can be identified.

The first interpretation is closely related to net theory
[1][2] where concurrency means causal independency of
events. Two concurrent events can occur temporally-ordered
or simultaneously. Lamport’s definition, based on the “hap-
pened before relation” [3], belongs to the same category
because the temporal order of concurrent events is also left
open.

In the case of the second interpretation, concurrent events
can take place in any order but not simultaneously. This
point of view is often referred to as the “interleaving model”
of concurrency. Typical examples are process algebras
[4][5] and transition systems [6][7].

The relationship between these two ‘“concurrency mod-
els” is illustrated by the example in Figure 1. A Petri Net
with concurrency (I) can always be transformed - with the
reachability graph (II) as an intermediate step - to a net
which describes indeterminate behavior without any concur-
rency (III). In the case of the interleaving model, simulta-
neous occurrence of concurrent events would be omitted (in
this case, the gray shaded transition in (IIT) was removed).

Figure 1: Transformation of Concurrency into
Nondeterminism



As a reason for excluding simultaneous occurrence of
events some authors refer to “typical hardware structures”!
or assume that simultaneous occurrence simply cannot be
observed.” These assumptions certainly do not apply in gen-
eral. Therefore, it must be scrutinized if the interleaving
model represents a sound understanding of concurrency.
Manna and Pnueli ([7], p. 20) view this problem as an
important one:

“The question whether the representation of concurrency
by interleaving is adequate and acceptable or whether we
should treat concurrency as a separate and unique phenom-
enon that cannot be reduced to nondeterminism, is one of the
most debatable issues in the theory of concurrency.”

Let us assume that we abandon the interleaving model
and its questionable assumption that concurrent events do
not occur simultaneously. Even in this case, the transforma-
tion of concurrency into nondeterminism (as shown in Fig-
ure 1) can still be done. The only difference is that the gray
shaded transition in (III) would not be removed and the
simultaneous occurrence of b and c¢ had to be seen as an
additional type of event (e.g. “e”).

In general, this example shows that every concurrent
behavior can be modeled as an indeterminate behavior - if
we choose a suitable set of event types. It remains unclear
which choice of event types is the “most appropriate”.
Manna’s and Pnueli’s question (see above) of concurrency
as a separate and unique phenomenon or just a special case
of nondeterminism, remains to be answered.

1.2 The Fuzzy Meaning of the Term ‘Distributed
System”

Another frequently used but also ambiguous term is the term
“distributed system”. This ambiguity has also been criti-
cized by authors such as Tanenbaum (see [8], p. 2):

“Various definitions of distributed systems have been
given in the literature, none of them satisfactory and none of
them in agreement with any of the others.”

Indeed, some questions arise from these inconsistencies.
To some, the existence of multiple computers being con-
nected by a network is the characteristic feature of a distrib-
uted system.3 This definition does not allow for a clear
differentiation of distributed and nondistributed systems,

1. see [6], bottom of page 372: “it is usually the case that two
accesses to the same memory location do not overlap in time
because of a hardware arbitration device.” A similar argu-
mentation is given in [7].

2. see [4], page 4: “The reason is that we assume of our external
observer that he can make only one observation at a time; this
implies that he is blind to the possibility that the system can
support two observations simultaneously, so this possibility
is irrelevant [...].”

because the term “computer” is too fuzzy, which, for exam-
ple, makes it difficult to classify certain multi-processor sys-
tems.

Other authors view “spatial distribution of the system
components” as the typical feature of distributed systems.4
This raises the question about what distances must be given
between system components for the system to be called dis-
tributed. Any length specification would be purely arbitrary.

Not all authors define distribution as a physical feature of
a system. According to Broy, a system is distributed if it is
“built from at least conceptually distributed components”
([11], p. 3) and Tel considers even “a collection of commu-
nicating processes”5 distributed system.

Obviously, there is no consensus on whether distribution
is a physical feature of a system or not. Furthermore, it
remains unclear what “spatially” or “conceptually distrib-
uted” means, etc.

2. A Multi-Level Approach to System Model-
ing

An approach to the description of information processing
systems is presented below, in which a system’s composi-
tional structure and behavior are brought into close relation-
ship. An important element of this approach is the idea of
virtual locations which is derived from our intuitive under-
standing of the term “location”.

2.1 Physical Locations and Agents

An information processing system performs activities which
are otherwise done by human beings. Therefore, it is always
possible to imagine such a system as several cooperating
persons (if we ignore complexity, speed and reliability
issues [12], p. 246). In this case, for each peace of informa-
tion existing in the system, there would be some physical
medium (such as a note or document) that is kept at a certain
place to which only some of the persons have access. Figure
2 shows an example of an information processing system in
the broadest sense. Each of the two persons on the left con-
tinuously place playing cards on a stack. (We are only inter-
ested in the uppermost card of each stack.) The cards are
placed at two different locations L; and L, which allows
both persons to act independently. Each currently visible

3. [9], p. 2: “A distributed system consists of a collection of
autonomous computers linked by a computer network [...]”

4. [10], p. 767: “A system is called distributed if its components
are placed or could be placed at spatially separated locations
[...].” (translated by author)

5. [13], p. 2: “[...] the definition [of a distributed system]
includes software systems built as a collection of communi-
cating processes, even when running on a single hardware
installation.”
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Figure 2: An Example of Physical Locations and
Agents

card carries the information “card value” (7,8,9,...,ace) as
well as the information “card color” (diamonds, heart,
spade, clubs).

The process taking place at L; and L, is observed by two
other persons (on the right). These persons observe events of
type “value changes at location L;” (V;) and “color changes
at location L;” (C;) i € {1.2}).

Two card events taking place at different locations can
occur temporally-ordered or simultaneously. The same
applies to card events taking place at the same location. (In
the latter case only value changes and color changes can
occur simultaneously.) This behavior can be described by
the Petri Net (a) in Figure 3. However, most people will intu-
itively prefer Petri Net (b), which describes the process as
two event sequences (one per location). Here, the simulta-
neous occurrence of a value change and a color change at the
same place is considered an additional type of event
(V;&C).

In addition to intuition, there are additional reasons to
choose Petri Net (b) instead of Petri Net (a). The event
sequence at each location is the result of a sequence of ele-
mentary actions. Because each of these activities requires a
certain period of time there must be a lower limit to the time
interval between two events occurring at the same location.
Therefore, we may assume that each observer is always able
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Figure 3: Alternative Behavior Models for
Figure 2

to distinguish between two observed events. Simultaneous
events at the same location (color change combined with
value change) are the result of a single elementary action,
thus these events are observed by all as “parts” of one single
event (the next card is put on a stack).

In contrast, concurrent events at different locations are the
result of independent activities. Therefore, the appearance of
new cards at different locations can occur within an arbitrary
short time period. In this case it depends on the observer’s
individual time resolution, whether two concurrent events
are perceived as simultaneous or temporally-ordered.

Causal dependency between two events can only be
achieved by an activity which also takes a certain amount of
time. (For example, one of the card-placing persons could
wait for the other person’s next card before putting his own
card on the stack.) Hence, there must be a lower limit to the
time between causally related events. Again it is a sound
assumption that these events can always be observed in the
corresponding temporal order.

The following conclusion can be drawn from these obser-
vations. Concurrency at one location is a modeling artifact
which can be eliminated by combining simultaneous events
to a single event, i.e. this kind of “concurrency” is simply a
special type of nondeterminism and thus should be modeled
as indeterminate sequential behavior. In contrast, concurrent
events at different locations should always be seen as sepa-
rate events, because in general “simultaneity” of such events
will depend on the observer. This is the nature of “true” con-
currency which cannot be represented as an indeterminate
sequential behavior.

2.2 Virtual Locations and Agents

The view of information processing systems as given in sec-
tion 2.1 is the basis for a modeling approach [14][15] that
brings system behavior and a system’s compositional struc-
ture into a close relationship. The central ideas behind that
modeling approach are outlined below.

In order to illustrate a system‘s compositional structure,
each piece of information existing in the system is assigned
a virtual location. These locations are virtual because they
are imaginary locations where information can be placed or
observed, but no assumption about the physical location of
information is linked to them ([14], pp. 75). The information
at a certain location can be a simple value such as an integer
or an arbitrary structured value such as a complex data struc-
ture.

In addition to locations, there are active system compo-
nents - called agents - which can place information at loca-
tions as well as observe locations. (As in the case of
locations, an agent can be totally unrelated to the physical
system structure.)



Figure 4 gives an example of a compositional structure
which consists of two agents and eight locations. Each loca-
tion can be used by a single agent as a private storage (L for
example) or as an interface to other agents (L for example).
Interfaces can be used by agents as output locations (L as
used by A,, for example) or as input locations (L; as used by
Ay, for example). For each location, there is at least one
agent which generates the observable values; also, a location
can be observed by multiple agents. Each agent generates
values for at least one location and observes at least one
location.

A given compositional structure in terms of virtual loca-
tions and agents does not imply any physical system struc-
ture.

Virtual locations can nevertheless be called locations
because we require them to be equivalent to physical loca-
tions (see section 2.1) with respect to observation:

Virtual locations are imaginary physical locations to
which the following constraints apply:

* temporal consistency
The observed temporal order of events occurring at the
same location does not contradict the real temporal order
(i.e. the order in which the events have been generated).
Any two observers of the same location always observe
the same temporal order of events.

* causal consistency
The observed temporal order of events does not contra-
dict their causal order. If concurrent events do not occur
at the same location, different observers can have differ-
ent views of the temporal order of these events.

The compositional structure is the basis for describing a sys-
tem’s behavior. A value change taking place at a certain
location and at a certain point in time is called an event. This
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lllustration of a Virtual Agent

definition reflects our intuitive understanding of the term
event, because an event is something happening at a certain
time and place. It implies that at a single location there will
always be an event sequence. Of course it is still possible
that separate values within a data structure change simulta-
neously at a single location. Nevertheless, these changes are
not to be seen as independent events but as “parts” of one
single event. Simultaneous events and “true” concurrency
can only be given if more than one location exists.

The sequence of values appearing at a certain location is
the outcome of a sequence of elementary activities, called
operations. When performing an operation an agent assigns
a new value (the operation result) to a certain location. This
value is derived from values which are observed by the
agent at one or more locations.

In this way, every agent performs a sequence of opera-
tions for each location it uses as output location or state stor-
age. An operation result can be an output value which is
computed from a state value observed at a storage location
and placed at an output location. It could also be a new state
value that is derived from the previous state value and an
input value, etc.

For each operation sequence an agent performs, i.e. for
each storage location or output location, we can imagine a
person “inside” the agent (see Figure 5). The agent shown
has one output location and one state storage, thus two imag-
inary persons are presented. When performing an operation
an agent (i.e. the corresponding imaginary person) reads val-
ues from the observed locations in order to derive the oper-
ation result:

The values being read during one operation represent
simultaneously observable values from the point of view of a
virtual agent.

These values represent a “snapshot” [16] because causal
consistency is required for the observation of multiple loca-
tions.! To assure temporal consistency, the sequence of val-
ues read from one location during an operation sequence
must not contradict the real value sequence.

1. Actually the causal consistency required here is a stronger
type than the causal consistency required in [16]; see [14],
pp. 77 for details.



2.3 Multiple Models at Different Levels

An essential feature of a complex information processing
system is that the system must always be described on more
than one level of abstraction [18]. Therefore, multiple mod-
els have to be defined which are more or less close to the
physical level. A model is preordered to another model if the
second model can be derived from the first by a design deci-
sion.! Depending on the amount of design decisions, a rela-
tively complex hierarchy of partially ordered models is
presented. This is another important concept of the modeling
approach presented here.

Furthermore, it should be underlined that the close rela-
tionship between compositional structure and behavior is
present at each modeling level because the modeling ele-
ments for compositional structure and behavior are strongly
linked. For example, certain events and operations always
affect certain locations and are always observed or per-
formed by certain agents, etc. It is not possible to define a
pure behavioral model from this point of view.

When executing a transition from a higher level model to
a lower level model, certain higher level elements such as
events, agents, locations, etc. must be mapped to respective
elements of the lower level. Such transitions mean changes
in behavior and/or compositional structure from level to
level, but the terms and concepts at each modeling level are
always the same and the number of levels is not limited by
principle. A detailed discussion of basic mappings of model
elements can be found in [14], pp. 81.

3. An Alternative View of Distributed and
Concurrent Systems

3.1 Functional Distribution versus Spatial Distri-
bution

The modeling approach presented above strongly differenti-
ates between active components (agents) and passive com-
ponents (locations) being affected by activities inside the
system. Only then can two interpretations of the term “dis-
tribution” be clearly and appropriately separated. The first
interpretation is related to the division of system functional-
1ty:

Functional distribution is given if a system consists of
multiple agents.

Functional distribution means a separation of responsibil-
ities in which different tasks in the system are assigned to
certain agents. Each task can be of arbitrary complexity

1. this does not require that the system is developed in a “top-
down” style.

because an agent may access multiple locations and thus can
perform numerous operation sequences.

For a detailed understanding of the system behavior loca-
tions are as important as agents because these are the places
where activities can be observed. This leads to the second
interpretation of “distribution”:

Spatial distribution is given if a system contains multiple
locations.?

3.2 Distribution as a Nonphysical Model Feature

Neither functional distribution nor spatial distribution refer
to the physical structure of the system. Therefore, a system
can be distributed even on higher levels of abstraction, but
this need not be seen as a hint concerning the physical imple-
mentation. Functional distribution is a division of function-
ality which can be totally unrelated to physical agents. Even
spatial distribution, as defined above, is not related to the
physical system structure because the term “location” is
defined without reference to (real) physical locations.

Distribution is to be considered primarily as a nonphysi-
cal system characteristic.

However, this does not exclude the fact that agents and
locations of a lower level model can easily be mapped to
physical system parts. Therefore, the modeling approach as
presented here can also be used for the description of hard-
ware systems.

It was discussed in section 2.3 that a complex system
requires multiple models at different levels of abstraction.
Because the compositional structure depends on the level of
abstraction, functional distribution and spatial distribution
are dependent on the level of abstraction as well:

Distribution is not a system feature but a model feature.

3.3 Distribution as a Feature of Model Mapping

If we look at the major topics in the context of distributed
systems, many terms are given which can be best explained
as model mappings where agents or locations of a higher
level model are implemented as multiple agents or locations
of a lower level model.

One example is replication, in which a single system
component is composed of multiple components of the same
type to achieve fault tolerance [19]. This can be seen as a
special type of model mapping where an agent of a higher
level model is mapped to several agents of a lower level
model.

2. Interfaces between the system and its environment are not to
be taken into account.



Caching is another concept which can also be explained
as a model mapping, since a state storage location of a
higher level model is implemented as a set of storage loca-
tions at the lower level.

These examples illustrate that important topics in the con-
text of distributed systems refer to model mappings in which
high level agents or locations are distributed during the tran-
sition to a lower level model. This leads to another interpre-
tation of the term “distribution”:

Distribution can be seen as a way to map a higher level
model to a lower level model.

The need for snapshot algorithms [16] can also be
derived from a model mapping. The primary purpose of a
snapshot algorithm is the observation of the global state of a
spatially distributed system. From an abstract point of view
this can be modeled as a system observer which has direct
read access to all state storages (S1,5,,53) of the observed
agents (see Figure 6). When a snapshot command is sent to
the system observer, he constructs a snapshot from the local
states. The approach presented in this paper allows this to be
modeled as one simple operation with the snapshot as the
operation’s result.

In practice, the compositional structure shown in Figure 6
must often be implemented using a communication sub-
system which requires agents to communicate indirectly via
message passing. At this level, the system observer cannot
have direct access to another agent’s state storages, thus a
snapshot can no longer be generated by a simple operation.
This problem can be solved by using a snapshot algorithm,
i.e. these algorithms are implementations of snapshot opera-
tions.

In addition to snapshot algorithms, the need for transac-
tions [17] can also be derived from a model mapping: if an
agent accesses a location during an operation (i.e. reads,
writes or modifies the corresponding value at the location),
this single access can be implemented as a set of accesses on

System Observer

A
Snapshot Snapshot
Command
z&)

Figure 6: An Abstract View of Snapshot Algo-
rithms

a lower level of abstraction. In order to be a correct, fault tol-
erant access implementation, this set of accesses must sat-
isfy the ACID properties. Therefore, transactions can be
interpreted as the outcome of mapping one operation or
location to multiple operations or locations of a lower level
model ([14], pp. 118). At a higher level, a transaction can be
viewed as one simple access to a virtual location which
yields a model with reduced complexity.

3.4 The Relationship between Concurrency and
Distribution

Because an agent can have access to multiple locations (pri-
vate storages) it is possible to have a spatially distributed
system without functional distribution. If, on the other hand,
functional distribution is present, there will (usually) be sev-
eral locations within the system (interfaces between agents
and state storages of agents), i.e. the system is spatially dis-
tributed. Furthermore, spatial distribution is a prerequisite of
concurrency. In summary, we obtain the following interde-
pendence:

Concurrency and functional distribution are independent
model features. Each implies spatial distribution but not
vice versa.

3.5 Concurrency as a Nonphysical Model Feature

It has been stated that spatial distribution is not a system fea-
ture but a model feature (see section 3.2). Because spatial
distribution is a prerequisite of concurrency, the following
statement applies:

Concurrency is not a system feature but a model feature.

Bearing this in mind, the interleaving model of concur-
rency can be viewed as an unfortunate mixture of two levels
of abstraction. On the one hand, interleaving models are pre-
sented as descriptions of concurrent behavior. On the other
hand, there is the assumption that concurrent events do not
occur simultaneously which clearly contradicts the idea of
causal independence. This assumption is simply a reference
to a lower level model where concurrency is no longer exis-
tent due to certain design decisions.

4. Conclusion

The modeling approach presented above provides a solution
to the conceptual problems and inconsistencies described in
the introduction (cp. section 1.). In addition to the separation
of modeling levels, the close relationship between composi-
tional structure and behavior is particularly important. In
this context, virtual locations represent a key concept.

Compositional structure and behavior of a system should
be viewed as equally important and complementary model-
ing aspects on each level of abstraction.



The insight that concurrency and distribution are non-
physical model features allows a differentiation of applica-
tion-related and implementation-related concurrency and
distribution. However, another important consequence is
that the classification of a system (as distributed or concur-
rent) depends on the chosen level of abstraction.

A strict separation of concurrent/distributed and non-
concurrent/distributed systems is impossible as a matter of
principle.

Moreover, the strong interdependence of compositional
structure and behavior allows a clear differentiation between
nondeterminism and “true” concurrency:

Concurrency can only be assumed in conjunction with
spatial distribution and should not be viewed as a special
kind of nondeterminism.

Our approach does not only simplify the modeling of con-
current and distributed systems. It also has the advantage of
more “natural” models, because every system can be seen as
a collection of cooperating agents. This has already proven
helpful in the documentation of complex system architec-
tures [15][20].

The ideas presented in this paper could also be the starting
point for the development of advanced programming con-
cepts which would not only allow a differentiation of mod-
eling levels but would also contain elements for describing
a system’s compositional structure [14].
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